823 resultados para Acidos graxos Omega-3


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the effect of preoperative supplementation of omega-3 fatty acids on the healing of colonic anastomoses in malnourished rats receiving paclitaxel. METHODS: we studied 160 male Wistar rats, divided in two groups: one subjected to malnutrition by pair feeding (M) for four weeks, and another that received food ad libitum (W). In the fourth week, the groups were further divided into two subgroups that received omega-3 or olive oil by gavage. The animals were submitted to colonic transection and end-to-end anastomosis. After the operation, each of the four groups was divided into two subgroups that received intraperitoneal isovolumetric solutions of saline or paclitaxel. RESULTS: mortality was 26.8% higher in the group of animals that received paclitaxel (p = 0.003). The complete rupture strength was greater in well-nourished-oil Paclitaxel group (WOP) compared with the the malnourished-oil Paclitaxel one (MOP). The collagen maturation index was higher in well-nourished-oil saline group (WOS) in relation to the malnutrition-oil-saline group (MOS), lower in malnourished-oil-saline group (MOS) in relation to malnourished-ômega3-saline one (M3S) and lower in the well-nourished-omega3-saline group (W3S) compared with the malnourished-omega3-saline (M3S). The blood vessel count was higher in the malnourished-oil-saline group (MOS) than in the malnourished-oil-paclitaxel group (MOP) and lower in the malnourished-oil-saline group (MOS) in relation to the malnourished-omega3-paclitaxel group (M3P). CONCLUSION: supplementation with omega-3 fatty acids was associated with a significant increase in the production of mature collagen in malnourished animals, with a reversal of the harmful effects caused by malnutrition associated with the use of paclitaxel on the rupture strength, and with a stimulus to neoangiogenesis in the group receiving paclitaxel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: to evaluate liver regeneration in rats after partial hepatectomy of 60% with and without action diet supplemented with fatty acids through the study of the regenerated liver weight, laboratory parameters of liver function and histological study. Methods: thirty-six Wistar rats, males, adults were used, weighing between 195 and 330 g assigned to control and groups. The supplementation group received the diet by gavage and were killed after 24h, 72h and seven days. Evaluation of regeneration occurred through analysis of weight gain liver, serum aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltranspeptidase, and mitosis of the liver stained with H&E. Results: the diet supplemented group showed no statistical difference (p>0.05) on the evolution of weights. Administration of fatty acids post-hepatectomy had significant reduction in gamma glutamyltransferase levels and may reflect liver regeneration. Referring to mitotic index, it did not differ between period of times among the groups. Conclusion: supplementation with fatty acids in rats undergoing 60% hepatic resection showed no significant interference related to liver regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient receptor potential channels family (TRP channels) is a relatively new group of cation channels that modulate a large range of physiological mechanisms. In the nervous system, the functions of TRP channels have been associated with thermosensation, pain transduction, neurotransmitter release, and redox signaling, among others. However, they have also been extensively correlated with the pathogenesis of several innate and acquired diseases. On the other hand, the omega-3 polyunsaturated fatty acids (n-3 fatty acids) have also been associated with several processes that seem to counterbalance or to contribute to the function of several TRPs. In this short review, we discuss some of the remarkable new findings in this field. We also review the possible roles played by n-3 fatty acids in cell signaling that can both control or be controlled by TRP channels in neurodegenerative processes, as well as both the direct and indirect actions of n-3 fatty acids on TRP channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As doenças cardiovasculares são responsáveis pela alta taxa de mortalidade nos países desenvolvidos e em desenvolvimento, assim, têm sido alvo de vários estudos. O objetivo deste trabalho foi avaliar as concentrações de colesterol e suas frações, triglicérides e pressão arterial em humanos. O estudo foi dividido em três tratamentos - dieta (placebo), estatina e ácidos graxos ômega-3 com dieta de 1200 kcal por dia para todos os grupos com oito pacientes cada, e vários parâmetros foram avaliados no tempo zero e 30 dias. Conclui-se que para o tratamento dieta houve diminuição de peso, colesterol total, HDL-c, triglicérides, Pressão arterial sistólica (PAS), Pressão arterial diastólica (PAD) e aumento no LDL-c. No tratamento estatina, houve redução de peso, colesterol total, LDL-c, triglicérides, PAS, PAD e aumento do HDL-c. Já no tratamento com ômega-3, constatou-se a diminuição de peso, colesterol total, LDL-c, triglicérides; aumento de PAS e PAD e níveis de HDL-c iguais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical composition and antioxidant capacity of five seeds, chia, golden flax, brown flax, white perilla, and brown perilla, were determined. The chemical properties analyzed included moisture, ash, crude protein, carbohydrates, total lipids, fatty acids, and antioxidant capacity (ABTS•+, DPPH•, and FRAP). The results showed the highest amounts of protein and total lipids in brown and white perilla. Perilla and chia showed higher amounts of alpha-linolenic fatty acid than those of flaxseed varieties, ranging between 531.44 mg g-1 of lipids in brown perilla, 539.07 mg g-1 of lipids in white perilla, and 544.85 mg g-1 of lipis in chia seed. The antioxidant capacity of the seeds, evaluated with ABTS•+, DPPH• , and FRAP methods, showed that brown perilla had greater antioxidant capacity when compared with white perilla, flax, and chia seeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of adding flaxseed flour to the diet of Nile tilapia on the fatty acid composition of fillets using chemometrics. A traditional and an experimental diet containing flaxseed flour were used to feed the fish for 60 days. An increase of 18:3 n-3 and 22:6 n-3 and a decrease of 18:2 n-6 were observed in the tilapia fillets fed the experimental diet. There was a reduction in the n-6:n-3 ratio. A period of 45 days of incorporation caused a significant change in tilapia chemical composition. Principal Component Analysis showed that the time periods of 45 and 60 days positively contributed to the total content of n-3, LNA, and DHA, highlighting the effect of omega-3 incorporation in the treatment containing flaxseed flour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The present work aimed at studying the effect of different drying methods applied to tilapia byproducts (heads, viscera and carcasses) fed with flaxseed, verifying the contents of omega-3 fatty acids. Two diets were given to the tilapia: a control and a flaxseed formulation, over the course of 60 days. After this period, they were slaughtered and their byproducts (heads, viscera and carcasses) were collected. These fish parts were analyzed in natura, lyophilized and oven dried. Byproducts from tilapia fed with flaxseed presented docosapentaenoic, eicopentaenoic and docosahexanoic fatty acids as a result of the enzymatic metabolism of the fish. The byproducts from the oven drying process had lower levels of polyunsaturated fatty acids. In the multivariate analysis, the byproducts from fish fed with flaxseed had a greater composition of fatty acids. The addition of flaxseed in fish diets, as well as the utilization of their byproducts, may become a good business strategy. Additionally, the byproducts may be dried to facilitate transport and storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-chain n-3 polyunsaturated fatty acids are found in oily fish and in fish oils and similar preparations. Substantial evidence from epidemiological and case-control studies indicates that consumption of fish, oily fish and long-chain n-3 fatty acids reduces risk of cardiovascular mortality. Secondary prevention studies using long-chain n-3 fatty acids in patients post-myocardial infarction have shown a reduction in total and cardiovascular mortality with an especially potent effect on sudden death. Long-chain n-3 fatty acids have been shown to beneficially modify a range of cardiovascular risk factors, which may result in primary cardiovascular prevention. However, reduced non-fatal and fatal events and a reduction in sudden death probably involve other mechanisms. Reduced thrombosis following long-chain n-3 fatty acids may play a role. A decrease in arrhythmias is a favoured mechanism of action of long-chain n-3 fatty acids and is supported by cell culture and animal studies. However human trials using implantable cardiac defibrillators have produced inconsistent findings and a recent meta-analysis does not support this mechanism of action. An alternative mechanism of action may be stabilisation of atherosclerotic plaques by long-chain n-3 fatty acids. This is suggested by one published human study which showed that incorporation of long-chain n-3 fatty acids into plaques collected at carotid endarterectomy resulted in fewer macrophages in the plaque and a morphology indicative of increased stability. These findings are supported from observations in an animal model and suggest that the primary effect of long-chain n-3 fatty acids might be on macrophages within the plaque.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current intakes of very long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are low in most individuals living in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish oil capsules contain these fatty acids also. Very long-chain omega-3 fatty acids are readily incorporated from capsules into transport (blood lipids), functional (cell and tissue), and storage (adipose) pools. This incorporation is dose-dependent and follows a kinetic pattern that is characteristic for each pool. At sufficient levels of incorporation, EPA and DHA influence the physical nature of cell membranes and membrane protein-mediated responses, lipid-mediator generation, cell signaling, and gene expression in many different cell types. Through these mechanisms, EPA and DHA influence cell and tissue physiology and the way cells and tissues respond to external signals. In most cases the effects seen are compatible with improvements in disease biomarker profiles or health-related outcomes. As a result, very long-chain omega-3 fatty acids play a role in achieving optimal health and in protection against disease. Long-chain omega-3 fatty acids not only protect against cardiovascular morbidity but also against mortality. In some conditions, for example rheumatoid arthritis, they may be beneficial as therapeutic agents. On the basis of the recognized health improvements brought about by long-chain omega-3 fatty acids, recommendations have been made to increase their intake. The plant omega-3 fatty acid, alpha-linolenic acid (ALA), can be converted to EPA, but conversion to DHA appears to be poor in humans. Effects of ALA on human health-related outcomes appear to be due to conversion to EPA, and since this is limited, moderately increased consumption of ALA may be of little benefit in improving health outcomes compared with increased intake of preformed EPA + DHA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current intakes of very long chain omega-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DNA) are low in most individuals living in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish oil capsules contain these fatty acids too. Very long chain w-3 fatty acids are readily incorporated from capsules into transport, functional, and storage pools. This incorporation is dose-dependent and follows a kinetic pattern that is characteristic for each pool. At sufficient levels of incorporation, EPA and DHA influence the physical nature of cell membranes and membrane protein-mediated responses, eicosanoid generation, cell signaling and gene expression in many different cell types. Through these mechanisms, EPA and DHA influence cell and tissue physiology, and the way cells and tissues respond to external signals. In most cases, the effects seen are compatible with improvements in disease biomarker profiles or in health-related outcomes. As a result, very long chain omega-3 fatty acids play a role in achieving optimal health and in protection against disease. Long chain omega-3 fatty acids protect against cardiovascular morbidity and mortality, and might be beneficial in rheumatoid arthritis, inflammatory bowel diseases, childhood learning, and behavior, and adult psychiatric and neurodegenerative illnesses. DHA has an important structural role in the eye and brain, and its supply early in life is known to be of vital importance. On the basis of the recognized health improvements brought about by long chain omega-3 fatty acids, recommendations have been made to increase their intake. (C) 2009 International Union of Biochemistry and Molecular Biology, Inc. Volume 35, Number 3, May/June 2009, Pages 266-272. E-mail: pcc@soton.ac.uk

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective Omega-3 polyunsaturated fatty acids (n-3 PUFA) may protect against the development of cardiovascular disease (CVD). Genotype at key genes such as nitric oxide synthase (NOS3) may determine responsiveness to fatty acids. Gene–nutrient interactions may be important in modulating the development of CVD, particularly in high-risk individuals with the metabolic syndrome (MetS). Methods Biomarkers of CVD risk, plasma fatty acid composition, and NOS3 single nucleotide polymorphism (SNP) genotype (rs11771443, rs1800783, rs1800779, rs1799983, rs3918227, and rs743507) were determined in 450 individuals with the MetS from the LIPGENE dietary intervention cohort. The effect of dietary fat modification for 12 weeks on metabolic indices of the MetS was determined to understand potential NOS3 gene–nutrient interactions. Results Several markers of inflammation and dyslipidaemia were significantly different between the genotype groups. A significant gene–nutrient interaction was observed between the NOS3 rs1799983 SNP and plasma n-3 PUFA status on plasma triacylglycerol (TAG) concentrations. Minor allele carriers (AC + AA) showed an inverse association with significantly higher plasma TAG concentrations in those with low plasma n-3 PUFA status and vice versa but the major allele homozygotes (CC) did not. Following n-3 PUFA supplementation, plasma TAG concentrations of minor allele carriers of rs1799983 were considerably more responsive to changes in plasma n-3 PUFA, than major allele homozygotes. Conclusions Carriers of the minor allele at rs1799983 in NOS3 have plasma TAG concentrations which are more responsive to n-3 PUFA. This suggests that these individuals might show greater beneficial effects of n-3 PUFA consumption to reduce plasma TAG concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human consumption of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) is below recommendations, and enriching chicken meat (by incorporating LC n-3 PUFA into broiler diets) is a viable means of increasing consumption. Fish oil is the most common LC n-3 PUFA supplement used but is unsustainable and reduces the oxidative stability of the meat. The objective of this experiment was to compare fresh fish oil (FFO) with fish oil encapsulated (EFO) in a gelatin matrix (to maintain its oxidative stability) and algal biomass at a low (LAG, 11), medium (MAG, 22), or high (HAG, 33 g/kg of diet) level of inclusion. The C22:6n-3 contents of the FFO, EFO, and MAG diets were equal. A control (CON) diet using blended vegetable oil was also made. As-hatched 1-d-old Ross 308 broilers (144) were reared (21 d) on a common starter diet then allocated to treatment pens (4 pens per treatment, 6 birds per pen) and fed treatment diets for 21 d before being slaughtered. Breast and leg meat was analyzed (per pen) for fatty acids, and cooked samples (2 pens per treatment) were analyzed for volatile aldehydes. Concentrations (mg/100 g of meat) of C20:5n-3, C22:5n-3, and C22:6n-3 were (respectively) CON: 4, 15, 24; FFO: 31, 46, 129; EFO: 18, 27, 122; LAG: 9, 19, 111; MAG: 6, 16, 147; and HAG: 9, 14, 187 (SEM: 2.4, 3.6, 13.1) in breast meat and CON: 4, 12, 9; FFO: 58, 56, 132; EFO: 63, 49, 153; LAG: 13, 14, 101; MAG: 11, 15, 102; HAG: 37, 37, 203 (SEM: 7.8, 6.7, 14.4) in leg meat. Cooked EFO and HAG leg meat was more oxidized (5.2 mg of hexanal/kg of meat) than the other meats (mean 2.2 mg/kg, SEM 0.63). It is concluded that algal biomass is as effective as fish oil at enriching broiler diets with C22:6 LC n-3 PUFA, and at equal C22:6n-3 contents, there is no significant difference between these 2 supplements on the oxidative stability of the meat that is produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.