73 resultados para Acidithiobacillus
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Les impacts environnementaux dues à l'extraction minière sont considérables. C'est l'action des microorganismes, en utilisant leur métabolisme du soufre sur les déchets miniers, qui engendre les plus grands défis. Jusqu'à présent, peu de recherches ont été effectués sur les microorganismes environnementaux pour la compréhension globale de l'action du métabolisme du soufre dans une optique de prévention et de rémédiation des impacts environnementaux de l'extraction minière. Dans cette étude, nous avons étudié une bactérie environnementale, Acidithiobacillus thiooxidans, dans le but de comprendre le métabolisme du soufre selon le milieu de culture et le niveau d'acidité du milieu. Nous avons utilisé la transcriptomique à haut débit, RNA-seq, en association avec des techniques de biogéochimie et de microscopie à électrons pour déterminer l'expression des gènes codants les enzymes du métabolisme du soufre. Nous avons trouvé que l'expression des gènes des enzymes du métabolisme du soufre chez ce microorganisme sont dépendantes du milieu, de la phase de croissance et du niveau d'acidité présent dans le milieu. De plus, les analyses biogéochimiques montrent la présence de composés de soufre réduits et d'acide sulfurique dans le milieu. Finalement, une analyse par microscopie électronique révèle que la bactérie emmagasine des réserves de soufre dans son cytoplasme. Ces résultats permettent une meilleure compréhension de son métabolisme et nous rapprochent de la possibilité de développer une technique de prédiction des réactions ayant le potentiel de causer des impacts environnementaux dus à l'extraction minière.
Resumo:
The recycling of metals from secondary sources can be advantageous. Among the metals of interest, we have cobalt, a metal used for various purposes. As regards the secondary sources of cobalt, the lithium-ion batteries can be considered, since they contain cobalt oxide in their composition (LiCoO2). This way, the objective of this work was to use the microorganism strains (Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans) to bioleach the LiCoO2 extracted from discarded lithium ion batteries with emphasis on the recovery of cobalt for synthesis of new materials of interest. The lineage growth occurred in T&K medium and the growth investigation was made by observing the media, by platelet growth and microscope analysis. Then, the inoculum was standardized on 5 x 106 cells mL-1 and used in bioleaching tests. The bioleaching was investigated: the microorganism nature: separate strains and A. ferrooxidans and A. thiooxidans consortium, bioleaching time (0 to 40 days), inoculum proportion (5 to 50% v/v), energy source (iron and sulfur) and residue concentration (1063 to 8500 mg L-1 of cobalt). The cobalt concentration in the media was found by atomic absorption spectrometry and the medium pH was monitored during the bioleaching. The results show that the amount of bioleached cobalt increases with time and the iron concentration. The bioleaching with A. thiooxidans was not influenced by the addition of sulfur. The use of the two lineages together did not improve the bioleaching rates. Among the lineages, the A. thiooxidans presented better results and was able to bioleach cobalt amounts above 50% in most of the experiments. A. thiooxidans presented lower bioleaching rates, with a maximum of 50% after 24 days of experiment. After reprocessing by bioleaching, the cobalt in solution was used for synthesis of new materials: such as LiCoO2 cathode and as adsorbent pesticide double lamellar hydroxide (HDL Co-Al-Cl) by the Pechini and co-precipitation methods. The reprocessed LiCoO2 presented a unique stoichiometric phase relative to the HT-LiCoO2 structure similar to the JCPDS 44-0145, presenting electrochemical activity when tested as a cathode material. The double lamellar hydroxide Co-Al-Cl was tested as pesticide adsorbent, being possible to adsorb around 100% of the pesticide. The bioleaching was efficient in the recovery of cobalt present in lithium-ion batteries and microorganisms presented high tolerance to the residue, being able to bioleach even at higher LiCoO2 concentrations. The cobalt bioleaching medium did not impair the synthesis phases and the obtained materials presented structure and activity similar to the sintered materials from the reagents containing cobalt.
Resumo:
Purpose: To develop a novel biotechnological method for removing toxic arsenic from two kinds of representative arsenic-containing ores using different mixed mesophilic acidophiles. Methods: Bioleaching of the two types of arsenic-containing ores by mixed arsenic-unadapted Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or mixed arsenic-adapted cultures, were carried out. Arsenic bioleaching ratios in the various leachates were determined and compared. Results: The results showed that the maximum arsenic leaching ratio obtained from realgar in the presence of mixed adapted cultures was 28.6 %. However, the maximum arsenic leaching ratio from realgar in the presence of mixed unadapted strains was only 12.4 %. Besides, maximum arsenic leaching ratios from arsenic-bearing refractory gold ore by mixed adapted strains or unadapted strains were 45.0 and 22.9 %, respectively. Oxidation of these two ores by sulfuric acid was insignificant, as maximum arsenic leaching ratios of realgar and arsenic-bearing refractory gold ore in the absence of any bacterium were only 2.8 and 11.2 %, respectively. Conclusion: Arsenic leaching ratio of realgar and refractory gold ore can be enhanced significantly in the presence of arsenic-adapted mesophilic acidophiles.
Resumo:
Connectivity of the glycocalyx covering of small communities of Acidithiobacillus ferrooxidans bacteria deposited on hydrophilic mica plates was imaged by atomic force microscopy. When part of the coverage was removed by water rinsing, an insoluble structure formed by corrals surrounding each individual bacterium was observed. A collective ring structure with clustered bacteria (>= 3) was observed, which indicates that the bacteria perceived the neighborhood in order to grow a protective structure that results in smaller production of exopolysaccharides material. The most surprising aspect of these collective corral structures was that they occur at a low bacterial cell density. The deposited layers were also analyzed by confocal Raman microscopy and shown to contain polysaccharides, protein, and glucoronic acid.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)