999 resultados para Accumulation rate, planktic foraminiferal mass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Indian Summer Monsoon (ISM) is an inter-hemispheric and highly variable ocean-atmosphere-land interaction that directly affects the densely populated Indian subcontinent. Here, we present new records of palaeoceanographic variability that span the last 500,000 years from the eastern equatorial Indian Ocean, a relatively under-sampled area of ISM influence. We have generated carbon and oxygen stable isotope records from three foraminiferal species from Ocean Drilling Program Site 758 (5°N, 90°E) to investigate the oceanographic history of this region. We interpret our resultant Dd18O (surface-thermocline) record of upper water-column stratification in the context of past ISM variability, and compare orbital phase relationships in our Site 758 data to other climate and monsoon proxies in the region. Results suggest that upper water-column stratification at Site 758, which is dominated by variance at precession and half-precession frequencies (23, 19 and 11 ka), is forced by both local (5°N) insolation and ISM winds. In the precession (23 ka) band, stratification minima at Site 758 lag northern hemisphere summer insolation maxima (precession minima) by 9 ka, which is consistent with Arabian Sea ISM phase estimates and suggests a common wind forcing in both regions. This phase implicates a strong sensitivity to both ice volume and southern hemisphere insolation forcing via latent heat export from the southern subtropical Indian Ocean. Additionally, we find evidence of possible overprinting of millennial-scale events during glacial terminations in our stratification record, which suggests an influence of remote abrupt climate events on ISM dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low concentrations of organic carbon in slowly accumulating sediments from Sites 597, 600, and 601 reflect a history of low marine productivity in the subtropical South Pacific since late Oligocene times. The distributions of n-alkanes, n-alkanoic acids, and n-alkanols provide evidence of the microbial alteration of sediment organic matter. Landderived hydrocarbons, possibly from eolian transport, dominate n-alkane distributions in these samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Annual-layer thickness data, spanning AD 1534-2001, from an ice core from East Rongbuk Coll on Qomolangma (Mount Everest, Himalaya) yield an age-depth profile that deviates systematically from a constant accumulation-rate analytical model. The profile clearly shows that the mean accumulation rate has changed every 50-100 years. A numerical model was developed to determine the magnitude of these multi-decadal-scale rates. The model was used to obtain a time series of annual accumulation. The mean annual accumulation rate decreased from similar to 0.8 m ice equivalent in the 1500s to similar to 0.3 m in the mid-1800s. From similar to 1880 to similar to 1970 the rate increased. However, it has decreased since similar to 1970. Comparison with six other records from the Himalaya and the Tibetan Plateau shows that the changes in accumulation in East Rongbuk Col are broadly consistent with a regional pattern over much of the Plateau. This suggests that there may be an overarching mechanism controlling precipitation and mass balance over this area. However, a record from Dasuopu, only 125 km northwest of Qomolangma and 700 m higher than East Rongbuk Col, shows a maximum in accumulation during the 1800s, a time during which the East Rongbuk Col and Tibetan Plateau ice-core and tree-ring records show a minimum. This asynchroneity may be due to altitudinal or seasonal differences in monsoon versus westerly moisture sources or complex mountain meteorology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcareous nannofossil and planktic foraminiferal assemblages from ODP Hole 1210A in the northwestern Pacific Ocean were used to reconstruct surface-water conditions for the past 500 kyr. Stratigraphic control was provided by calcareous nannofossil events that are thought to be synchronous over a broad range of latitudes. Calcareous nannofossil and planktic foraminiferal assemblages and abundance patterns indicate the unlikelihood of long term (Milankovitch-scale) latitudinal shifts of the Kuroshio Extension over the last 500 kyr and illustrate two successive surface water-mass states, one that prevailed prior to 300 ka and one that existed after 300 ka. The relative abundance of very small placoliths and the absolute abundance of the upper photic zone (UPZ) coccolith species decrease abruptly at approximately 300 ka. The relative abundance of the lower photic zone (LPZ) species Florisphaera profunda greatly increases at the same time, although intervals during which the relative abundance of this taxon is very low or absent also occur prior to 300 ka. The absolute abundance of planktic foraminifera gradually increased after the 300-ka boundary, including peaks of Globoconella inflata. These assemblage and abundance changes suggest significant modifications to the surface water-mass structure. Surface water was weakly stratified prior to 300 ka, but alternated between intensely stratified and vertically mixed after 300 ka. Changes in the surface water-mass structure suggest an intensification of the East Asian summer and winter monsoon after 300 ka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pacific Ocean is the largest water body on Earth, and circulation in the Pacific contributed significantly to climate evolution in the latest Cretaceous, the culmination of a period of long-term cooling. Here, we present new high-resolution late Campanian to Maastrichtian benthic and planktic foraminiferal stable isotope data and a neodymium (Nd) isotope record obtained from sedimentary ferromanganese oxide coatings of Ocean Drilling Program Hole 1210B from the tropical Pacific Ocean (Shatsky Rise). These new records resolve 13 million years in the latest Cretaceous, providing insights into changes in surface and bottom water temperatures and source regions of deep to intermediate waters covering the carbon isotope excursions of the Campanian-Maastrichtian Boundary Event (CMBE) and the Mid-Maastrichtian event (MME). Our new benthic foraminiferal d18O and Nd isotope records together with published Nd isotope data show markedly parallel trends across the studied interval over a broad range of bathyal to abyssal water depths interpreted to reflect changes in the intensity of deep-ocean circulation in the tropical Pacific. In particular, we observe a three-million-year-long period of cooler conditions in the early Maastrichtian (72.5 to 69.5 Ma) when a concomitant change toward less radiogenic seawater Nd isotope signatures probably marks a period of enhanced admixture and northward flow of deep waters with Southern Ocean provenance. We suggest this change to have been triggered by intensified formation and convection of deep waters in the high southern latitudes, a process that weakened during the MME (69.5 to 68.5 Ma). The early Maastrichtian cold interval is closely related to the negative and positive carbon isotope trends of the CMBE and MME. The millions-of-years long duration of these carbon cycle perturbations suggests a tectonic forcing of climatic cooling, possibly related to changes in ocean basin geometry and bathymetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eocene Thermal Maximum 2 (ETM2) occurred ~1.8 Myr after the Paleocene Eocene Thermal Maximum (PETM) and, like the PETM, was characterized by a negative carbon isotope excursion coupled with warming. We combined benthic foraminiferal and sedimentological records for Southeast Atlantic Sites 1263 (1500 m paleodepth) and 1262 (3600 m paleodepth) to show that benthic foraminiferal diversity and accumulation rates declined more precipitously and severely at the shallower site during peak ETM2. The sites are in close proximity, so differences in surface productivity cannot have caused this differential effect. Instead, on the basis of an analysis of climate modelling experiments, we infer that changes in ocean circulation pattern across ETM2 may have resulted in more pronounced warming at intermediate depths (Site 1263). The effects of more pronounced warming include increased metabolic rates, leading to a decrease in effective food supply and increased deoxygenation, thus potentially explaining the more severe benthic impacts at Site 1263. In response to more severe benthic disturbance, bioturbation may have decreased at Site 1263 as compared to Site 1262, hence differentially affecting the bulk carbonate record. We use a sediment-enabled Earth system model to test whether a reduction in bioturbation and/or the likely reduced carbonate saturation of more poorly ventilated waters can explain the more extreme excursion in bulk d13C and sharper transition in wt% CaCO3 at Site 1263. We find that both enhanced acidification and reduced bioturbation during peak ELMO conditions are needed to account for the observed features. Our combined ecological and modelling analysis illustrates the potential role of ocean circulation changes in amplifying local environmental changes and driving temporary, but drastic, loss of benthic biodiversity and abundance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site 1085 is located on the continental rise of southwest Africa at a water depth of 1713 m off the mouth of the Orange River in the Cape Basin. The site is part of the suite of locations drilled during Leg 175 on the Africa margin to reconstruct the onset and evolution of the elevated biological productivity associated with the Benguela Current upwelling system (Wefer, Berger, Richter, et al., 1998, doi:10.2973/odp.proc.ir.175.1998). Three sediment samples were collected per section from Cores 170-1085A-28H through 45X (251-419 mbsf) to provide a survey of the sediment record of paleoproductivity from the middle late Miocene to the early Pliocene (~8.7-4.7 Ma), which is a period that includes the postulated northward migration and intensification of the Benguela Current and the establishment of modern circulation off southwest Africa (Siesser, 1980; Diester-Haass et al., 1992; Berger et al., 1998). Core 170-1085A-30H (270-279 mbsf) had essentially no recovery; this coring gap was filled with samples from Cores 170-1085B-29H and 30H (261-280 mbsf). The results of measurements of multiple paleoproductivity proxies are summarized in this report. Included in these proxies are the radiolarian, foraminiferal, and echinoderm components of the sand-sized sediment fraction. Opal skeletons of radiolarians (no diatoms were found) relate to paleoproductivity and water mass chemistry (Summerhayes et al., 1995, doi:10.1016/0079-6611(95)00008-5; Lange and Berger, 1993, doi:10.2973/odp.proc.sr.130.011.1993; Nelson et al., 1995, doi:10.1029/95GB01070). The accumulation rates of benthic foraminifers are useful proxies for paleoproductivity (Herguera and Berger, 1991, doi:10.1130/0091-7613(1991)019<1173:PFBFAG>2.3.CO;2; Nees, 1997, doi:10.1016/S0031-0182(97)00012-6; Schmiedl and Mackensen, 1997, doi:10.1016/S0031-0182(96)00137-X) because these fauna subsist on organic matter exported from the photic zone. Echinoderms also depend mainly on food supply from the photic zone (Gooday and Turley, 1990), and their accumulation rates are an additional paleoproductivity proxy. Concentrations of calcium carbonate (CaCO3) and organic carbon in sediment samples are fundamental measures of paleoproductivity (e.g., Meyers, 1997, doi:10.1016/S0146-6380(97)00049-1). In addition, organic matter atomic carbon/nitrogen (C/N) ratios and delta13C values can be used to infer the origin of the organic matter contained within the sediments and to explore some of the factors affecting its preservation and accumulation (Meyers, 1994, doi:10.1016/0009-2541(94)90059-0).