914 resultados para Accelerated failure time model
Resumo:
Use of microarray technology often leads to high-dimensional and low- sample size data settings. Over the past several years, a variety of novel approaches have been proposed for variable selection in this context. However, only a small number of these have been adapted for time-to-event data where censoring is present. Among standard variable selection methods shown both to have good predictive accuracy and to be computationally efficient is the elastic net penalization approach. In this paper, adaptation of the elastic net approach is presented for variable selection both under the Cox proportional hazards model and under an accelerated failure time (AFT) model. Assessment of the two methods is conducted through simulation studies and through analysis of microarray data obtained from a set of patients with diffuse large B-cell lymphoma where time to survival is of interest. The approaches are shown to match or exceed the predictive performance of a Cox-based and an AFT-based variable selection method. The methods are moreover shown to be much more computationally efficient than their respective Cox- and AFT- based counterparts.
Resumo:
CONTEXT: It is uncertain whether intensified heart failure therapy guided by N-terminal brain natriuretic peptide (BNP) is superior to symptom-guided therapy. OBJECTIVE: To compare 18-month outcomes of N-terminal BNP-guided vs symptom-guided heart failure therapy. DESIGN, SETTING, AND PATIENTS: Randomized controlled multicenter Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) of 499 patients aged 60 years or older with systolic heart failure (ejection fraction < or = 45%), New York Heart Association (NYHA) class of II or greater, prior hospitalization for heart failure within 1 year, and N-terminal BNP level of 2 or more times the upper limit of normal. The study had an 18-month follow-up and it was conducted at 15 outpatient centers in Switzerland and Germany between January 2003 and June 2008. INTERVENTION: Uptitration of guideline-based treatments to reduce symptoms to NYHA class of II or less (symptom-guided therapy) and BNP level of 2 times or less the upper limit of normal and symptoms to NYHA class of II or less (BNP-guided therapy). MAIN OUTCOME MEASURES: Primary outcomes were 18-month survival free of all-cause hospitalizations and quality of life as assessed by structured validated questionnaires. RESULTS: Heart failure therapy guided by N-terminal BNP and symptom-guided therapy resulted in similar rates of survival free of all-cause hospitalizations (41% vs 40%, respectively; hazard ratio [HR], 0.91 [95% CI, 0.72-1.14]; P = .39). Patients' quality-of-life metrics improved over 18 months of follow-up but these improvements were similar in both the N-terminal BNP-guided and symptom-guided strategies. Compared with the symptom-guided group, survival free of hospitalization for heart failure, a secondary end point, was higher among those in the N-terminal BNP-guided group (72% vs 62%, respectively; HR, 0.68 [95% CI, 0.50-0.92]; P = .01). Heart failure therapy guided by N-terminal BNP improved outcomes in patients aged 60 to 75 years but not in those aged 75 years or older (P < .02 for interaction) CONCLUSION: Heart failure therapy guided by N-terminal BNP did not improve overall clinical outcomes or quality of life compared with symptom-guided treatment. TRIAL REGISTRATION: isrctn.org Identifier: ISRCTN43596477.
Resumo:
A self-adaptive system adjusts its configuration to tolerate changes in its operating environment. To date, requirements modeling methodologies for self-adaptive systems have necessitated analysis of all potential system configurations, and the circumstances under which each is to be adopted. We argue that, by explicitly capturing and modelling uncertainty in the operating environment, and by verifying and analysing this model at runtime, it is possible for a system to adapt to tolerate some conditions that were not fully considered at design time. We showcase in this paper our tools and research results. © 2012 IEEE.
Resumo:
Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which dearly demonstrates the advantages of the rank regression models.
Resumo:
We consider rank regression for clustered data analysis and investigate the induced smoothing method for obtaining the asymptotic covariance matrices of the parameter estimators. We prove that the induced estimating functions are asymptotically unbiased and the resulting estimators are strongly consistent and asymptotically normal. The induced smoothing approach provides an effective way for obtaining asymptotic covariance matrices for between- and within-cluster estimators and for a combined estimator to take account of within-cluster correlations. We also carry out extensive simulation studies to assess the performance of different estimators. The proposed methodology is substantially Much faster in computation and more stable in numerical results than the existing methods. We apply the proposed methodology to a dataset from a randomized clinical trial.
Resumo:
We considered prediction techniques based on models of accelerated failure time with random e ects for correlated survival data. Besides the bayesian approach through empirical Bayes estimator, we also discussed about the use of a classical predictor, the Empirical Best Linear Unbiased Predictor (EBLUP). In order to illustrate the use of these predictors, we considered applications on a real data set coming from the oil industry. More speci - cally, the data set involves the mean time between failure of petroleum-well equipments of the Bacia Potiguar. The goal of this study is to predict the risk/probability of failure in order to help a preventive maintenance program. The results show that both methods are suitable to predict future failures, providing good decisions in relation to employment and economy of resources for preventive maintenance.
Resumo:
The adverse health effects of long-term exposure to lead are well established, with major uptake into the human body occurring mainly through oral ingestion by young children. Lead-based paint was frequently used in homes built before 1978, particularly in inner-city areas. Minority populations experience the effects of lead poisoning disproportionately. ^ Lead-based paint abatement is costly. In the United States, residents of about 400,000 homes, occupied by 900,000 young children, lack the means to correct lead-based paint hazards. The magnitude of this problem demands research on affordable methods of hazard control. One method is encapsulation, defined as any covering or coating that acts as a permanent barrier between the lead-based paint surface and the environment. ^ Two encapsulants were tested for reliability and effective life span through an accelerated lifetime experiment that applied stresses exceeding those encountered under normal use conditions. The resulting time-to-failure data were used to extrapolate the failure time under conditions of normal use. Statistical analysis and models of the test data allow forecasting of long-term reliability relative to the 20-year encapsulation requirement. Typical housing material specimens simulating walls and doors coated with lead-based paint were overstressed before encapsulation. A second, un-aged set was also tested. Specimens were monitored after the stress test with a surface chemical testing pad to identify the presence of lead breaking through the encapsulant. ^ Graphical analysis proposed by Shapiro and Meeker and the general log-linear model developed by Cox were used to obtain results. Findings for the 80% reliability time to failure varied, with close to 21 years of life under normal use conditions for encapsulant A. The application of product A on the aged gypsum and aged wood substrates yielded slightly lower times. Encapsulant B had an 80% reliable life of 19.78 years. ^ This study reveals that encapsulation technologies can offer safe and effective control of lead-based paint hazards and may be less expensive than other options. The U.S. Department of Health and Human Services and the CDC are committed to eliminating childhood lead poisoning by 2010. This ambitious target is feasible, provided there is an efficient application of innovative technology, a goal to which this study aims to contribute. ^
Resumo:
Epoxy resin bonded mica splitting is the insulation of choice for machine stators. However, this system is seen to be relatively weak under time varying mechanical stress, in particular the vibration causing delamination of mica and deboning of mica from the resin matrix. The situation is accentuated under the combined action of electrical, thermal and mechanical stress. Physical and probabilistic models for failure of such systems have been proposed by one of the authors of this paper earlier. This paper presents a pragmatic accelerated failure data acquisition and analytical paradigm under multi factor coupled stress, Electrical, Thermal. The parameters of the phenomenological model so developed are estimated based on sound statistical treatment of failure data.
Resumo:
Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.