963 resultados para Acc (1-aminocyclopropane-1-carboxylic Acid)
Resumo:
The gene encoding 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO; EC 1.14.12.4) was cloned by using an oligonucleotide probe corresponding to the N terminus of the enzyme to screen a DNA library of Pseudomonas sp. MA-1. The gene encodes for a protein of 379 amino acid residues corresponding to a molecular mass of 41.7 kDa, the same as that previously estimated for MHPCO. MHPCO was expressed in Escherichia coli and found to have the same properties as the native enzyme from Pseudomonas sp. MA-1. This study shows that MHPCO is a homotetrameric protein with one flavin adenine dinucleotide bound per subunit. Sequence comparison of the enzyme with other hydroxylases reveals regions that are conserved among aromatic flavoprotein hydroxylases.
Resumo:
Mutant sorghum (Sorghum bicolor [L.] Moench) deficient in functional phytochrome B exhibits reduced photoperiodic sensitivity and constitutively expresses a shade-avoidance phenotype. Under relatively bright, high red:far-red light, ethylene production by seedlings of wild-type and phytochrome B-mutant cultivars progresses through cycles in a circadian rhythm; however, the phytochrome B mutant produces ethylene peaks with approximately 10 times the amplitude of the wild type. Time-course northern blots show that the mutant's abundance of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase mRNA SbACO2 is cyclic and is commensurate with ethylene production, and that ACC oxidase activity follows the same pattern. Both SbACO2 abundance and ACC oxidase activity in the wild-type plant are very low under this regimen. ACC levels in the two cultivars did not demonstrate fluctuations coincident with the ethylene produced. Simulated shading caused the wild-type plant to mimic the phenotype of the mutant and to produce high amplitude rhythms of ethylene evolution. The circadian feature of the ethylene cycle is conditionally present in the mutant and absent in the wild-type plant under simulated shading. SbACO2 abundance in both cultivars demonstrates a high-amplitude diurnal cycle under these conditions; however, ACC oxidase activity, although elevated, does not exhibit a clear rhythm correlated with ethylene production. ACC levels in both cultivars show fluctuations corresponding to the ethylene rhythm previously observed. It appears that at least two separate mechanisms may be involved in generating high-amplitude ethylene rhythms in sorghum, one in response to the loss of phytochrome B function and another in response to shading.
Resumo:
Polygalacturonase (PG) is the major enzyme responsible for pectin disassembly in ripening fruit. Despite extensive research on the factors regulating PG gene expression in fruit, there is conflicting evidence regarding the role of ethylene in mediating its expression. Transgenic tomato (Lycopersicon esculentum) fruits in which endogenous ethylene production was suppressed by the expression of an antisense 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene were used to re-examine the role of ethylene in regulating the accumulation of PG mRNA, enzyme activity, and protein during fruit ripening. Treatment of transgenic antisense ACC synthase mature green fruit with ethylene at concentrations as low as 0.1 to 1 μL/L for 24 h induced PG mRNA accumulation, and this accumulation was higher at concentrations of ethylene up to 100 μL/L. Neither PG enzyme activity nor PG protein accumulated during this 24-h period of ethylene treatment, indicating that translation lags at least 24 h behind the accumulation of PG mRNA, even at high ethylene concentrations. When examined at concentrations of 10 μL/L, PG mRNA accumulated within 6 h of ethylene treatment, indicating that the PG gene responds rapidly to ethylene. Treatment of transgenic tomato fruit with a low level of ethylene (0.1 μL/L) for up to 6 d induced levels of PG mRNA, enzyme activity, and protein after 6 d, which were comparable to levels observed in ripening wild-type fruit. A similar level of internal ethylene (0.15 μL/L) was measured in transgenic antisense ACC synthase fruit that were held for 28 d after harvest. In these fruit PG mRNA, enzyme activity, and protein were detected. Collectively, these results suggest that PG mRNA accumulation is ethylene regulated, and that the low threshold levels of ethylene required to promote PG mRNA accumulation may be exceeded, even in transgenic antisense ACC synthase tomato fruit.
Resumo:
To characterise the physiology of development and senescence for Grevillea 'Sylvia'. oral organs, respiration, ethylene production and ACC concentrations in harvested flowers and flower parts were measured. The respiration rate of harvested inflorescences decreased over time during senescence. In contrast, both ethylene production and ACC concentration increased. Individual flowers, either detached from cut inflorescences held in vases at 20degreesC or detached from in planta inflorescences at various stages of development, had similar patterns of change in ACC concentration and rates of respiration and ethylene production as whole inflorescences. The correlation between ACC concentration and ethylene production by individual flowers detached from cut inflorescences held in vases was poor (r(2)=0.03). The isolated complete gynoecium (inclusive of the pedicel) produced increasing amounts of ethylene during development. Further sub-division of flower parts and measurement of their ethylene production at various stages of development revealed that the distal part of the gynoecium (inclusive of the stigma) had the highest rate of ethylene production. In turn, anthers had higher rates of ethylene production and also higher ACC concentrations than the proximal part of the gynoecium (inclusive of the ovary). Rates of ethylene production and ACC concentrations for tepal abscission zone tissue and adjacent central tepal zone tissue were similar. ACC concentration in pollen was similar to that in senescing perianth tissue. Overall, respiration, ethylene and ACC content measurements suggest that senescence of G. 'Sylvia' is non-climacteric in character. Nonetheless, the phytohormone ethylene is produced and evidently mediates normal flower development and non-climacteric senescence processes.
Resumo:
To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded: chitinase, 1-aminocyclopropane- 1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species. © 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The longevity of Grevillea 'Sylvia' inflorescences can be very short and is influenced by exposure to ethylene. Gibberellic acid has the potential to delay senescence in some cut flowers by acting as an anti-ethylene treatment. Gibberellic acid was therefore applied to Grevillea 'Sylvia' inflorescences in vase solutions to determine its effects on longevity. Treatments with gibberellic acid did not prolong the longevity of inflorescences or influence 1-aminocyclopropane-1-carboxylic acid concentrations. Treatments at high gibberellic acid concentrations enhanced flower abscission and we therefore conclude that vase-applied gibberellic acid treatments are not suitable for extending the longevity of cut Grevillea 'Sylvia' inflorescences.
Resumo:
Aim: Salt formation is a widely used approach to improve the physicochemical and solid state properties of an active pharmaceutical ingredient. In order to better understand the relationships between the active drug, the selected counterion and the resultant salt form, crystalline salts were formed using four different carboxylic acid drugs and a closely related series of amine counterions. Thirty-six related crystalline salts were prepared, characterized and the relationship between solubility and dissolution behaviour and other properties of the salt and the counterion studied. Methods: Salts of four model acid drugs, gemfibrozil, flurbiprofen, ibuprofen and etodolac were prepared using the counterions butylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan-1-ol, 2-amino-2-methylpropan-1,3-diol andtris(hydroxymethyl)aminomethane. Salt formation was confirmed, the salts were characterized and their corresponding solubilities determined and rationalized with respect to the counterions' properties. Results and conclusion: The properties of the salt highly dependent on the nature of the counterion and, although there is considerable variation, some general conclusion can be drawn. For the alkyl amines series, increasing chain length leads to a reduction in solubility across all the acidic drugs studied and a reduction in melting point, thus contradicting simplistic relationships between solubility and melting point. Small, compact counterions consistently produce crystalline salts with high melting point accompanied with a modest improvement in solubility and the nature of hydrogen bonding between the ions has a major impact on the solubility. © 2012 Informa Healthcare USA, Inc.
Resumo:
The vase-life of Alstroemeria (cv. Rebecca) flowers is terminated when the tepals abscise. Abscission was accelerated by both chloroethylphosphonic acid (CEPA) and 1-aminocyclopropane-1-carboxylic acid (ACC). Petals abscised 24 h earlier compared with controls, when isolated cymes were placed in 340 nM CEPA, and earlier still when higher concentrations were used. This suggests that flowers of this Alstroemeria cultivar are very ethylene sensitive. Treatment with silver thiosulphate (STS) overcame the effects of exposure to CEPA and delayed perianth abscission of untreated isolated flowers by 3-4 days. The inclusion of 1% sucrose in the vase solution also extended longevity but not by as much as STS treatment; combined STS and sucrose treatments did not increase longevity beyond that of either treatment alone. However, removal of the young buds from the axil of the first flower was the most effective treatment to extend vase-life and encouraged the growth and development of the remaining flower. Flowers on cut inflorescences from which young axillary buds were trimmed more than doubled in fresh weight 6 days after flower opening compared with an increase of only 70-80% in those untreated or treated with STS and/or sucrose. Growth was less in isolated cymes but followed a similar pattern. The effect of STS and/or sucrose treatment was synergistic with the trimming treatment and thus the vase-life of trimmed, STS and sucrose-treated flowers was over 7 days longer than that for untreated controls. © 2003 Elsevier B.V. All rights reserved.
Resumo:
For the first time, short-chain organic acids are described in interstitial waters from sediments and lithified materials in a backarc setting. Organic acids in interstitial waters from the Tonga forearc region were also analyzed and compared with previous organic acid analyses from the Mariana and Bonin forearc interstitial waters. In the Tonga backarc setting, propionate typically dominates the organic acid assemblage, and organic acids are a consistent feature of these interstitial waters. The persistent presence of ammonia and the dominance of propionate over formate in the backarc interstitial waters suggest that the organic acids in this setting have their origin in reductive deamination of amino acids derived from sedimentary proteinaceous material. The organic acid assemblage revealed in the samples from Hole 841B in the Tonga forearc are similar to the organic acid assemblage detected in the Mariana forearc, that is, formate dominates the assemblage over acetate or propionate. These forearc organic acid assemblages may both have formed by a similar mechanism.
Resumo:
For the first time, short-chain organic acids are described from serpentine-associated interstitial waters. In this geologic setting, formate typically dominates the organic acid assemblage. Within the forearc setting, the organic acids are associated only with unconsolidated serpentine. Their existence may be the result of alkaline hydrolysis of ester linkages in organic matter that has been entrained in the serpentine diapir.
Resumo:
Previous studies (Stavroulakis and Sfakiotakis, 1993) have shown an inhibition of propylene-induced ethylene production in kiwifruit below a critical temperature range of 11-14.8 degrees C. The aim of this research was to identify the biochemical basis of this inhibition in kiwifruit below 11-14.8 degrees C. 'Hayward' kiwifruit were treated with increasing propylene concentrations at 10 and 20 degrees C. Ethylene biosynthesis pathways and fruit ripening were investigated. Kiwifruit at 20 degrees C in air started autocatalysis of ethylene production and ripened after 19 d with a concomitant increase in respiration. Ethylene production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) activity and consequently to the delayed increase of l-aminocyclopropane l-carboxylic acid (ACC) content. In contrast propylene treatment induced 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase) activity with no lag period. Moreover, transcription of ACC synthase and ACC oxidase genes was active only in ethylene-producing kiwifruit at 20 degrees C. In contrast, treatment at 10 degrees C with propylene strongly inhibited ethylene production, which was attributed to the low activities of both ACC synthase and ACC oxidase as well as the low initial ACC level. Interestingly, fruit treated with propylene at 10 degrees C appeared to be able to transcribe the ACC oxidase but not the ACC synthase gene. However, propylene induced ripening of that fruit almost as rapidly as in the propylene-treated fruit at 20 degrees C. Respiration rate was increased together with propylene concentration. It is concluded that kiwifruit stored at 20 degrees C behaves as a typical climacteric fruit, while at 10 degrees C behaves like a non-climacteric fruit. We propose that the main reasons for the inhibition of the propylene induced (autocatalytic) ethylene production in kiwifruit at low temperature (less than or equal to 10 degrees C), are primarily the suppression of the propylene-induced ACC synthase gene expression and the possible post-transcriptional modification of ACC oxidase.
Resumo:
Previous studies (Stavroulakis and Sfakiotakis, 1993) have shown an inhibition of propylene-induced ethylene production in kiwifruit below a critical temperature range of 11-14.8 degrees C. The aim of this research was to identify the biochemical basis of this inhibition in kiwifruit below 11-14.8 degrees C. 'Hayward' kiwifruit were treated with increasing propylene concentrations at 10 and 20 degrees C. Ethylene biosynthesis pathways and fruit ripening were investigated. Kiwifruit at 20 degrees C in air started autocatalysis of ethylene production and ripened after 19 d with a concomitant increase in respiration. Ethylene production and the respiration rise appeared earlier with increased propylene concentrations. Ripening proceeded immediately after propylene treatment, while ethylene autocatalysis needed a lag period of 24-72 h. The latter event was attributed to the delay found in the induction of 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) activity and consequently to the delayed increase of l-aminocyclopropane l-carboxylic acid (ACC) content. In contrast propylene treatment induced 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase) activity with no lag period. Moreover, transcription of ACC synthase and ACC oxidase genes was active only in ethylene-producing kiwifruit at 20 degrees C. In contrast, treatment at 10 degrees C with propylene strongly inhibited ethylene production, which was attributed to the low activities of both ACC synthase and ACC oxidase as well as the low initial ACC level. Interestingly, fruit treated with propylene at 10 degrees C appeared to be able to transcribe the ACC oxidase but not the ACC synthase gene. However, propylene induced ripening of that fruit almost as rapidly as in the propylene-treated fruit at 20 degrees C. Respiration rate was increased together with propylene concentration. It is concluded that kiwifruit stored at 20 degrees C behaves as a typical climacteric fruit, while at 10 degrees C behaves like a non-climacteric fruit. We propose that the main reasons for the inhibition of the propylene induced (autocatalytic) ethylene production in kiwifruit at low temperature (less than or equal to 10 degrees C), are primarily the suppression of the propylene-induced ACC synthase gene expression and the possible post-transcriptional modification of ACC oxidase.
Resumo:
Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth.
Resumo:
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.