957 resultados para AXON DIAMETER
Resumo:
Each primary olfactory neuron stochastically expresses one of similar to1000 odorant receptors. The total population of these neurons therefore consists of similar to1,000 distinct subpopulations, each of which are mosaically dispersed throughout one of four semi-annular zones in the nasal cavity. The axons of these different subpopulations are initially intermingled within the olfactory nerve. However, upon reaching the olfactory bulb, they sort out and converge so that axons expressing the same odorant receptor typically target one or two glomeruli. The spatial location of each of these 1800 glomeruli are topographically-fixed in the olfactory bulb and are invariant from animal to animal. Thus, while odorant receptors are expressed mosaically by neurons throughout the olfactory neuroepithelium their axons sort out, converge and target the same glomerulus within the olfactory bulb. How is such precise and reproducible topographic targeting generated? While some of the mechanisms governing the growth cone guidance of olfactory sensory neurons are understood, the cues responsible for homing axons to their target site remain elusive.
Resumo:
The process of establishing long-range neuronal connections can be divided into at least three discrete steps. First, axons need to be stimulated to grow and this growth must be towards appropriate targets. Second, after arriving at their target, axons need to be directed to their topographically appropriate position and in some cases, such as in cortical structures, they must grow radially to reach the correct laminar layer Third, axons then arborize and form synaptic connections with only a defined subpopulation of potential post-synaptic partners. Attempts to understand these mechanisms in the visual system have been ongoing since pioneer studies in the 1940s highlighted the specificity of neuronal connections in the retino-tectal pathway. These classical systems-based approaches culminated in the 1990s with the discovery that Eph-ephrin repulsive interactions were involved in topographical mapping. In marked contrast, it was the cloning of the odorant receptor family that quickly led to a better understanding of axon targeting in the olfactory system. The last 10 years have seen the olfactory pathway rise in prominence as a model system for axon guidance. Once considered to be experimentally intractable, it is now providing a wealth of information on all aspects of axon guidance and targeting with implications not only for our understanding of these mechanisms in the olfactory system but also in other regions of the nervous system.
Resumo:
Data were collected in early ripening peach [Prunus persica (L.) Batsch] varieties trained to a vase system to determine if a relationship exists between fruit weight and shoot diameter. The experiment was conducted with 3 varieties at Gainesville, FL with detailed pruning and with 3 other varieties at Atapulgus, GA with minimum pruning. All the varieties were similar in fruit development period (FDP) and fruit size. The largest shoot diameter was generally found in the upper canopy in all varieties. There was no correlation between shoot diameter and fruit weight for 'TropicBeauty', 'TropicSnow' and 'UF2000' at Gainesville under detailed pruning. There was a significant (p = 0.01) correlation for 'Flordacrest' in the lower (r = 0.53) canopy and for 'White Robin' in both the upper (r = 0.38) and lower (r = 0.40) canopy at Attapulgus, GA under minimal pruning. In these situations, large stems were associated with large fruit. 'Delta', grown at Attapulgus with minimal pruning, showed no correlation between shoot diameter and fruit weight, probably because it is male sterile and produced large fruit due to a reduced crop load.
Resumo:
Some ophthalmic surgeries require induction of mydriasis, however, drugs traditionally used for this purpose significantly reduces tear production. To evaluate the effect of acepromazine and tramadol, used alone or in combination, on pupil diameter, tear production, heart and respiratory rate, systolic blood pressure and rectal temperature, these drugs were administered to seven clinically normal dogs divided into three experimental groups (G1 - acepromazine; G2 - tramadol; G3 - tramadol + acepromazine) that differed only in the sedation protocol. Parameters were measured in four experimental moments. Miosis occurred in G1, in addition to reduced tear production and respiratory rate. No significant changes were found in the parameters assessed in G2, whereas in G3, there was decrease in tear production of the right eye, decrease in the respiratory rate and rectal temperature. Tramadol proved to be a drug suitable for pre-anesthetic procedures that require the maintenance of pupil diameter and keeps the tear production within normal parameters. However, the use of acepromazine alone or in combination with tramadol requires protection of the patient's eye surface to prevent the occurrence of undesirable ophthalmic changes.
Resumo:
PURPOSE: 1. Identify differences in optic nerve sheath diameter (ONSD) as an indirect measure of intracranial pressure (ICP) in glaucoma patients and a healthy population. 2. Identify variables that may correlate with ONSD in primary open-angle glaucoma (POAG) and normal tension glaucoma (NTG) patients. METHODS: Patients with NTG (n = 46) and POAG (n = 61), and healthy controls (n = 42) underwent B-scan ultrasound measurement of ONSD by an observer masked to the patient diagnosis. Intraocular pressure (IOP) was measured in all groups, with additional central corneal thickness (CCT) and visual field defect measurements in glaucomatous patients. Only one eye per patient was selected. Kruskal-Wallis or Mann-Whitney were used to compare the different variables between the diagnostic groups. Spearman correlations were used to explore relationships among these variables. RESULTS: ONSD was not significantly different between healthy, NTG and POAG patients (6.09 ± 0.78, 6.03 ± 0.69, and 5.71 ± 0.83 respectively; p = 0.08). Visual field damage and CCT were not correlated with ONSD in either of the glaucoma groups (POAG, p = 0.31 and 0.44; NTG, p = 0.48 and 0.90 respectively). However, ONSD did correlate with IOP in NTG patients (r = 0.53, p < 0.001), while it did not in POAG patients and healthy controls (p = 0.86, p = 0.46 respectively). Patient's age did not relate to ONSD in any of the groups (p > 0.25 in all groups). CONCLUSIONS: Indirect measurements of ICP by ultrasound assessment of the ONSD may provide further insights into the retrolaminar pressure component in glaucoma. The correlation of ONSD with IOP solely in NTG patients suggests that the translaminar pressure gradient may be of particular importance in this type of glaucoma.
Resumo:
The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.
Resumo:
OBJECTIVE: To assess the effect of transient and sustained variations in cardiac load on the values of the end-systolic pressure-diameter relation (ESPDR) of the left ventricle. METHODS: We studied 13 dogs under general anesthesia and autonomic blockade. Variations of cardiac loads were done by elevation of blood pressure by mechanical constriction of the aorta. Two protocols were used in each animal: gradual peaking and decreasing pressure variation, the "transient arterial hypertension protocol" (TAH), and a quick and 10 min sustained elevation, the "sustained arterial hypertension protocol"(SAH). Then, we compared the ESDR in these two situations. RESULTS: Acute elevation of arterial pressure, being it "transitory" or "sustained", did not alter the heart frequency and increased similarly the preload and after load. However, they acted differently in end systolic pressure-diameter relation. It was greater in the SAH than TAH protocol, 21.0±7.3mmHg/mm vs. 9.2±1.2mmHg/mm (p<0.05). CONCLUSION: The left ventricular ESPDR values determined during sustained pressure elevations were higher than those found during transient pressure elevations. The time-dependent activation of myocardial contractility associated with the Frank-Starling mechanism is the major factor in inotropic stimulation during sustained elevations of blood pressure, determining an increase in the ESPDR values.
Resumo:
El desarrollo y funcionamiento del sistema nervioso dependen de la formación de circuitos neuronales específicos y de programas intrínsecos y extrínsecos que actúan como moduladores del desarrollo neuronal. Inicialmente, los neuroblastos "sensan" a través de receptores específicos, la presencia en el medio de factores de crecimiento, como neurotrofinas clásicas (BDNF, NGF, etc), IGF-1, factores Wnts, que regulan la diferenciación neuronal, polarización, migración, etc. Hasta hace pocos años, las funciones específicas de los diferentes sistemas de factor de crecimiento-receptor en el establecimiento de polaridad y la regulación del crecimiento axonal eran mayormente desconocidas. Más recientemente, trabajos de nuestro y otros grupos de investigación han aportado significativamente al conocimiento de los mecanismos que involucran los sistemas IGF-1-receptor de IGF-1, BDNF-TrkB y NGF-TrkA sobre el desarrollo de polaridad neuronal. Sin embargo, si bien se conoce que los factores de crecimiento Wnt cumplen un rol crucial en eventos que ocurren durante la maduración neuronal (dendritogénesis, sinaptogénesis) poco se sabe sobre los mecanismos por los cuales estos factores regularían el establecimiento inicial de polaridad y el crecimiento axonal. Los factores Wnt como así también su primer efector intracelular Dishevelled (DVL) y sus cascadas de señalización participan de procesos como neurogénesis, guiado axonal, desarrollo dendrítico y formación y mantenimiento de sinápsis. Por estas razones, para el desarrollo del presente proyecto planeamos estudiar los efectos de los factores Wnts, su receptor Frizzled (Fz) y su efector DVL sobre el establecimiento de polaridad y la regulación del crecimiento axonal. También compararemos los efectos de los factores Wnt con los de IGF-1 (el único factor de crecimiento conocido esencial para el establecimiento de polaridad). Finalmente, intentaremos determinar cuál o cuáles de las cascadas intracelulares de señalización activadas por los Wnts están involucradas en sus efectos axogénicos. La metodología a utilizar se basará en el empleo de cultivos primarios de neuronas de hipocampo de embriones de rata de 18 días de gestación, los que serán expuestos a los factores Wnt y/o IGF-1. Se diseñarán experimentos tendientes a evaluar los efectos de dichos factores durante los diferentes estadíos de diferenciación neuronal que se analizarán por microscopía de fluorescencia confocal. Al mismo tiempo se realizarán ensayos de subfraccionamiento que permitan purificar conos de crecimiento aislados en los que se evaluará el rol local de Wnt y sus efectores sobre la fosforilación de quinasas que median la adición local de membrana y elongación axonal. Se examiná el rol de DVL sobre la especificación axonal a través de la expresión epistática en neuronas no diferenciadas como así también se bloqueará su expresión a tavés del uso de siRNA o cDNAs que actúen como dominantes negativas. Finalmente, se examinará una posible "transactivación" por IGF-1 o Wnts de sus receptores o primeros efectores intracelulares específicos, IRS-1- PI3K para IGF-1 y Dishevelled para Wnts. Para ello, se diseñarán experimentos en los que se utilizarán inhibidores farmacológicos específicos y se realizan ensayos de fosforilación en conos de crecimiento aislados y en cultivos neuronales. Los resultados serán cuantificados y sometidos softwares estadísticos adecuados.El desarrollo de estos experimentos nos permitirá examinar posibles paralelismos entre la activación del sistema Wnt-Frizzled-Dishevelled y del sistema IGF-1-Receptor de IGF-1-PI3K, el único sistema factor de crecimiento-receptor conocido esencial para el establecimiento de la polaridad neuronal y así poder lograr un acercamiento al/los posible mecanismo/s que regula/n la diferenciación neuronal y el crecimiento axonal.
Resumo:
Abstract Background: Configuration of the abdominal aorta is related to healthy aging and a variety of disorders. Objectives: We aimed to assess heritable and environmental effects on the abdominal aortic diameter. Methods: 114 adult (69 monozygotic, 45 same-sex dizygotic) twin pairs (mean age 43.6 ± 16.3 years) underwent abdominal ultrasound with Esaote MyLab 70X ultrasound machine to visualize the abdominal aorta below the level of the origin of the renal arteries and 1-3 cm above the bifurcation. Results: Age- and sex-adjusted heritability of the abdominal aortic diameter below the level of the origin of the renal arteries was 40% [95% confidence interval (CI), 14 to 67%] and 55% above the aortic bifurcation (95% CI, 45 to 70%). None of the aortic diameters showed common environmental effects, but unshared environmental effects were responsible for 60% and 45% of the traits, respectively. Conclusions: Our analysis documents the moderate heritability and its segment-specific difference of the abdominal aortic diameter. The moderate part of variance was explained by unshared environmental components, emphasizing the importance of lifestyle factors in primary prevention. Further studies in this field may guide future gene-mapping efforts and investigate specific lifestyle factors to prevent abdominal aortic dilatation and its complications.
Resumo:
Purpose: Revolutionary endovascular treatments are on the verge of being available for management of ascending aortic diseases. Morphometric measurements of the ascending aorta have already been done with ECG-gated MDCT to help such therapeutic development. However the reliability of these measurements remains unknown. The objective of this work was to compare the intraobserver and interobserver variability of CAD (computer aided diagnosis) versus manual measurements in the ascending aorta. Methods and materials: Twenty-six consecutive patients referred for ECG-gated CT thoracic angiography (64-row CT scanner) were evaluated. Measurements of the maximum and minimum ascending aorta diameters at mid-distance between the brachiocephalic artery and the aortic valve were obtained automatically with a commercially available CAD and manually by two observers separately. Both observers repeated the measurements during a different session at least one month after the first measurements. Intraclass coefficients as well the Bland and Altman method were used for comparison between measurements. Two-paired t-test was used to determine the significance of intraobserver and interobserver differences (alpha = 0.05). Results: There is a significant difference between CAD and manual measurements in the maximum diameter (p = 0.004) for the first observer, whereas the difference was significant for minimum diameter between the second observer and the CAD (p <0.001). Interobserver variability showed a weak agreement when measurements were done manually. Intraobserver variability was lower with the CAD compared to the manual measurements (limits of variability: from -0.7 to 0.9 mm for the former and from -1.2 to 1.3 mm for the latter). Conclusion: In order to improve reproductibility of measurements whenever needed, pre- and post-therapeutic management of the ascending aorta may benefit from follow-up done by a unique observer with the help of CAD.
Resumo:
Purpose: Recently morphometric measurements of the ascending aorta have been done with ECG-gated MDCT to help the development of future endovascular therapies (TCT) [1]. However, the variability of these measurements remains unknown. It will be interesting to know the impact of CAD (computer aided diagnosis) with automated segmentation of the vessel and automatic measurements of diameter on the management of ascending aorta aneurysms. Methods and Materials: Thirty patients referred for ECG-gated CT thoracic angiography (64-row CT scanner) were evaluated. Measurements of the maximum and minimum ascending aorta diameters were obtained automatically with a commercially available CAD and semi-manually by two observers separately. The CAD algorithms segment the iv-enhanced lumen of the ascending aorta into perpendicular planes along the centreline. The CAD then determines the largest and the smallest diameters. Both observers repeated the automatic measurements and the semimanual measurements during a different session at least one month after the first measurements. The Bland and Altman method was used to study the inter/intraobserver variability. A Wilcoxon signed-rank test was also used to analyse differences between observers. Results: Interobserver variability for semi-manual measurements between the first and second observers was between 1.2 to 1.0 mm for maximal and minimal diameter, respectively. Intraobserver variability of each observer ranged from 0.8 to 1.2 mm, the lowest variability being produced by the more experienced observer. CAD variability could be as low as 0.3 mm, showing that it can perform better than human observers. However, when used in nonoptimal conditions (streak artefacts from contrast in the superior vena cava or weak lumen enhancement), CAD has a variability that can be as high as 0.9 mm, reaching variability of semi-manual measurements. Furthermore, there were significant differences between both observers for maximal and minimal diameter measurements (p<0.001). There was also a significant difference between the first observer and CAD for maximal diameter measurements with the former underestimating the diameter compared to the latter (p<0.001). As for minimal diameters, they were higher when measured by the second observer than when measured by CAD (p<0.001). Neither the difference of mean minimal diameter between the first observer and CAD nor the difference of mean maximal diameter between the second observer and CAD was significant (p=0.20 and 0.06, respectively). Conclusion: CAD algorithms can lessen the variability of diameter measurements in the follow-up of ascending aorta aneurysms. Nevertheless, in non-optimal conditions, it may be necessary to correct manually the measurements. Improvements of the algorithms will help to avoid such a situation.
Resumo:
Recently, morphometric measurements of the ascending aorta have been done with ECG-gated multidector computerized tomography (MDCT) to help the development of future novel transcatheter therapies (TCT); nevertheless, the variability of such measurements remains unknown. Thirty patients referred for ECG-gated CT thoracic angiography were evaluated. Continuous reformations of the ascending aorta, perpendicular to the centerline, were obtained automatically with a commercially available computer aided diagnosis (CAD). Then measurements of the maximal diameter were done with the CAD and manually by two observers (separately). Measurements were repeated one month later. The Bland-Altman method, Spearman coefficients, and a Wilcoxon signed-rank test were used to evaluate the variability, the correlation, and the differences between observers. The interobserver variability for maximal diameter between the two observers was up to 1.2 mm with limits of agreement [-1.5, +0.9] mm; whereas the intraobserver limits were [-1.2, +1.0] mm for the first observer and [-0.8, +0.8] mm for the second observer. The intraobserver CAD variability was 0.8 mm. The correlation was good between observers and the CAD (0.980-0.986); however, significant differences do exist (P<0.001). The maximum variability observed was 1.2 mm and should be considered in reports of measurements of the ascending aorta. The CAD is as reproducible as an experienced reader.