52 resultados para AUTOXIDATION
Resumo:
The biodiesel is defined as the mono-alkyl ester derived from long-chain fatty acids, from renewable sources such as vegetable oils or animal fat, whose use is associated with the replacement of fossil fuels in diesel engine cycle. The biodiesel is susceptible to oxidation when exposed to air and this process of oxidation affects the quality of fuel, mainly due to long periods of storage. Because of this, the oxidation stability has been the focus of numerous researches since it directly affects the producers, distributors and users of fuel. One of the possibilities to increase the resistance of biodiesel is the autoxidation treatment with inhibitors of oxidation. The antioxidants can be used as potential inhibitors of the effects of oxidation on the kinematic viscosity and the index of acidity of biodiesel, thereby increasing oxidative stability. This work aims to examine the efficiency of antioxidants, α-tocopherol and butylated hydroxy-toluene (BHT), added the biodiesel content of remembrance through Pressurized-Differential Scanning Calorimetry (P-DSC), Thermogravimetry (TG) and Petrology. The results showed that the use of antioxidant BHT, at the concentration of 2000ppm, increased resistance to oxidation of the biodiesel and oxidative induction time (OIT), which is a better result as antioxidant than the α-tocopherol. With the thermogravimetric analysis, it was observed that the biodiesel presented an initial decomposition temperature of lower tendency than that of oil, demonstrating to be more volatile, bearing great similarity to the diesel and being characterized as an alternative fuel. The rheological analysis indicated that each sample of biodiesel behaved as a Newtonian fluid
Resumo:
Biodiesel is a fuel made up by mono-alkyl-esters of long chain fatty acids, derived from vegetable oils or animal fat. This fuel can be used in compression ignition engines for automotive propulsion or energy generation, as a partial or total substitute of fossil diesel fuel. Biodiesel can be processed from different mechanisms. Transesterification is the most common process for obtaining biodiesel, in which an ester compound reacts with an alcohol to form a new ester and a new alcohol. These reactions are normally catalyzed by the addition of an acid or a base. Initially sunflower, castor and soybean oil physicochemical properties are determined according to standard test methods, to evaluate if they had favorable conditions for use as raw material in the transesterification reaction. Sunflower, castor and soybean biodiesel were obtained by the methylic transesterification route in the presence of KOH and presented a yield above 93% m/m. The sunflower/castor and soybean/castor blends were studied with the aim of evaluating the thermal and oxidative stability of the biofuels. The biodiesel and blends were characterized by acid value, iodine value, density, flash point, sulfur content, and content of methanol and esters by gas chromatography (GC). Also studies of thermal and oxidative stability by Thermogravimetry (TG), Differential Scanning Calorimetry High Pressure (P-DSC) and dynamic method exothermic and Rancimat were carried out. Biodiesel sunflower and soybean are presented according to the specifications established by the Resolution ANP no 7/2008. Biodiesel from castor oil, as expected, showed a high density and kinematic viscosity. For the blends studied, the concentration of castor biodiesel to increased the density, kinematic viscosity and flash point. The addition of castor biodiesel as antioxidant in sunflower and soybean biodiesels is promising, for a significant improvement in resistance to autoxidation and therefore on its oxidative stability. The blends showed that compliance with the requirements of the ANP have been included in the range of 20-40%. This form may be used as a partial substitute of fossil diesel
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An extract from the pericarps of I. lancifolia afforded two dihydrochalcones (1 and 2) and two flavonolignans (3 and 4), with compounds 2-4 being of novel structure. The antioxidant activities of compounds 1-4 were evaluated through the measurement of malondialdehyde production, and Q(1/2) (concentration necessary far 50% inhibition of autoxidation) data were calculated. The Q(1/2) values obtained for 1-4 and the standard compounds a-tocopherol and quercetin were 6.9, 4.7, 5.5, 4.8, 12.1, and 7.6 mu g/mL, respectively.
Resumo:
The autoxidation of [Ni-II(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) and Ni(II)tetraglycine, accelerated by S-IV is studied spectrophotometrically by following the formation of Ni-III complexes.
Resumo:
Trifluoperazine (TFP) (35 μM) prevents mitochondrial transmembrane potential (ΔΨ) collapse and swelling induced by 10 μM Ca2+ plus oxyradicals generated from δ-aminolevulinic acid autoxidation. In contrast with EGTA, TFP cannot restore the totally collapsed ΔΨ. So, TFP might not remove Ca2+ from its 'harmful site', but could impair the ROS-driven cross-linking between membrane -SH proteins. Our data are correlated with the protective uses of TFP against oxidative processes promoted by oxyradicals plus Ca2+.
The characterization of a thermostable and cambialistic superoxide dismutase from thermus filiformis
Resumo:
The superoxide dismutase (TfSOD) gene from the extremely thermophilic bacterium Thermus filiformis was cloned and expressed at high levels in mesophilic host. The purified enzyme displayed approximately 25 kDa band in the SDS-PAGE, which was further confirmed as TfSOD by mass spectrometry. The TfSOD was characterized as a cambialistic enzyme once it had enzymatic activity with either manganese or iron as cofactor. TfSOD showed thermostability at 65, 70 and 80°C. The amount of enzyme required to inhibit 50% of pyrogallol autoxidation was 0·41, 0·56 and 13·73 mg at 65, 70 and 80°C, respectively. According to the circular dichroism (CD) spectra data, the secondary structure was progressively lost after increasing the temperature above 70°C. The 3-dimensional model of TfSOD with the predicted cofactor binding corroborated with functional and CD analysis. © 2013 The Society for Applied Microbiology.
Resumo:
The study of antioxidant has a great interest to biochemistry and medicine, due to of used in the human body as inhibitor to free radical process, which can cause premature aging and degenerative diseases. Furthermore, antioxidant is widely used in food industry that i s used to prevent food deterioration, in fats and oils (autoxidation, known as rancidity). Thereby, the survey data labels of vegetable oils such as soybean one, corn one and sunflower one, it is very important, with this survey data label was possible to verify the antioxidants used on vegetable oils and describe their chemical structure, molecular formula, lethal dose and daily dose by review. Following this review, it was possible to create a website with in formation and description of antioxidants. This database has free access to the public, in order to help the population about these chemicals compounds, and help them to choose the more beneficial food to eat
Resumo:
The stability of the Glossoscolex paulistus hemoglobin (HbGp), in two iron oxidation states (and three forms), as monitored by optical absorption, fluorescence emission and circular dichroism (CD) spectroscopies, in the presence of the chaotropic agent urea, is studied. HbGp oligomeric dissociation, denaturation and iron oxidation are observed. CD data show that the cyanomet-HbGp is more stable than the oxy-form. Oxy- and cyanomet-HbGp show good fits on the basis of a two state model with critical urea concentrations at 220-222 nm of 5.1 +/- 0.2 and 6.1 +/- 0.1 mol/L, respectively. The three-state model was able to reveal a subtle second transition at lower urea concentration (1.0-2.0 mol/L) associated to partial oligomeric dissociation. The intermediate state for oxy- and cyanomet-HbGp is very similar to the native state. For met-HbGp, a different equilibrium, in the presence of urea, is observed. A sharp transition at 1.95 +/- 0.05 mol/L of denaturant is observed, associated to oligomeric dissociation and hemichrome formation. In this case, analysis by a three-state model reveals the great similarity between the intermediate and the unfolded states. Analysis of spectroscopic data, by two-state and three-state models, reveals consistency of obtained thermodynamic parameters for HbGp urea denaturation. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The aim of my Ph.D. research was to study the new synthetic ways for the production of adipic acid. Three different pathways were studied: i) oxidation of cyclohexanone with molecular oxygen using Keggin – heteropolycompounds as the catalyst, ii) Baeyer – Villiger oxidation of cyclohexanone with hydrogen peroxide in the presence of two different heterogeneous catalysts, titanium silicalite and silica grafted decatungstate, iii) two step synthesis of adipic acid starting from cyclohexene via 1,2-cyclohexanediol. The first step was catalyzed by H2WO4 in the presence of the phase transfer catalyst, the oxidant was hydrogen peroxide. The second step, oxidation of 1,2 – cyclohexanediol was performed in the presence of oxygen and the heterogeneous catalyst – ruthenium on alumina. The results of my research showed that: i) Oxidation of cyclohexanone with molecular oxygen using Keggin heteropolycompounds is possible, anyway the conversion of ketone is low and the selectivity to adipic acid is lowered by the consecutive reaction to from lower diacids. Moreover it was found out, that there are two mechanisms involved: redox type and radicalic chain-reaction autoxidation. The presence of the different mechanism is influenced by the reaction condition. ii) It is possible to perform thermally activated oxidation of cyclohexanone and obtain non negligible amount of the products (caprolactone and adipic acid). Performing the catalyzed reaction it was demonstrated that the choice of the reaction condition and of the catalyst plays a crucial role in the product selectivity, explaining the discrepancies between the literature and our research. iii) Interesting results can be obtained performing the two step oxidation of cyclohexene via 1,2-cyclohexanediol. In the presence of phase transfer catalyst it is possible to obtain high selectivity to alcohol with stoichiometric amount of oxidant. In the second step of the synthesis, the conversion of alcohol is rather low with modest selectivity to adipic acid
Resumo:
In dieser Arbeit sollte der Einfluss einer Überproduktion von humaner Superoxiddismutase 1 (hSOD1) auf die Spiegel der DNA-Schäden in verschiedenen Geweben von transgenen Mäusen untersucht werden. Tiere die eine Defizienz des Ogg1- und Csb- Proteins aufweisen und deshalb oxidative Purinmodifikationen nicht oder nur schwer reparieren können, akkumulieren 8-oxoG im Laufe ihres Lebens (Osterod, et al. 2001). Aus diesem Grund sind diese ein gutes Modell, um protektive Eigenschaften von Antioxidantien wie z.B. Substanzen oder Enzymen zu untersuchen. Fusser, et al. 2011 konnten beispielsweise zeigen, dass das pflanzliche Polyphenol Resveratrol die endogenen Spiegel an 8-oxoG sowie die spontanen Mutatiosraten im Lac I - Gen senken kann. Um den Einfluss von hSOD1 in vivo zu untersuchen, wurden in zwei Zuchtschritten 4 Mausgenotypen generiert, nämlich (Csb -/- Ogg1 -/- und Csb +/- Ogg1 +/- Mäuse jeweils mit ohne hSOD1 Überexpression). Diese wurden in verschiedenen Altersstufen auf die Basalspiegel an oxidativen Schäden (Einzelstrangbrüche und Fpg-sensitive Läsionen) in der Leber, der Niere und der Milz untersucht. Die Genotypen wurden zunächst charakterisiert und die hSOD1-Überexpression mittels qRT-PCR, Western Blot und Enzymaktivitätsbestimmung verifiziert. Es konnte an diesen Tieren erstmalig gezeigt werden, dass SOD die Generierung von DNA-Schäden in vivo mit zunehmendem Alter der Tiere senkt und dass deshalb Superoxid eine der reaktiven Sauerstoffspezies ist, die unter physiologischen Bedingungen für die DNA-Schäden verantwortlich ist. Außerdem kann ein möglicher toxischer Effekt der Überproduktion von SOD ausgeschlossen werden. Erhöhte Spiegel an oxidativen DNA-Schäden durch womöglich erhöhte Spiegel an H2O2 konnten in dieser Studie nicht beobachtet werden. Eine Messung der Genexpression anderer antioxidativer Enzyme wie Katalase, SOD2 und SOD3, GPX oder HO1 sind an diesem Effekt nicht beteiligt. Auch konnte kein Einfluss des redoxsensitiven Transkriptionsfaktors Nrf2 gezeigt werden. rnUm mögliche Quellen der für die oxidativ gebildeten DNA-Schäden verantwortlichen ROS zu identifizieren, wurde der Einfluss des Dopaminstoffwechsels untersucht. Während des Dopaminmetabolismus werden intrazellulär Reaktive Sauerstoffspezies (H2O2 und O2.-) gebildet und tragen sehr wahrscheinlich zur Entstehung von neurodegenerativen Erkrankungen wie Parkinson bei. In dem gängigen Parkinson-Zellkulturmodell SH-SY5Y konnte keine Erhöhung von oxidativen Schäden in nukleärer DNA nach Dopaminbehandlung nachgewiesen werden. Eine Überexpression der Dopaminmetabolisierenden Enzyme MAO-A und MAO-B zeigen bei niedrigen Dosen Dopamin eine leichte jedoch nicht signifikante Erhöhung der Fpg-sensitiven Modifikationen. Die Überproduktion des Dopamintransporters zeigte keinen Effekt nach Dopaminzugabe. Es kann geschlussfolgert werden, dass durch erhöhte MAO-A und MAO-B endogen ROS gebildet werden, die die Bildung Fpg-sensitiver Läsionen hervorrufen. Bei hohen Dosen und langer Inkubationszeit steht die Dopaminautoxidation, anschließende Neuromelaninbildung und als Konsequenz Apoptose im Vordergrund.rn
Resumo:
Since 3-hydroxyanthranilic acid (3HAA), an oxidation product of tryptophan metabolism, is a powerful radical scavenger [Christen, S., Peterhans, E., ; Stocker, R. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 2506], its reaction with peroxyl radicals was investigated further. Exposure to aqueous peroxyl radicals generated at constant rate under air from the thermolabile radical initiator 2,2'-azobis[2-amid-inopropane] hydrochloride (AAPH) resulted in rapid consumption of 3HAA with initial accumulation of its cyclic dimer, cinnabarinic acid (CA). The initial rate of formation of the phenoxazinone CA accounted for approximately 75% of the initial rate of oxidation of 3HAA, taking into account that 2 mol of 3HAA are required to form 1 mol of CA. Consumption of 3HAA under anaerobic conditions (where alkyl radicals are produced from AAPH) was considerably slower and did not result in detectable formation of CA. Addition of superoxide dismutase enhanced autoxidation of 3HAA as well as the initial rates of peroxyl radical-induced oxidation of 3HAA and formation of CA by approximately 40-50%, whereas inclusion of xanthine/xanthine oxidase decreased the rate of oxidation of 3HAA by approximately 50% and inhibited formation of CA almost completely, suggesting that superoxide anion radical (O2.-) was formed and reacted with reaction intermediate(s) to curtail formation of CA. Formation of CA was also observed when 3HAA was added to performed compound I of horseradish peroxidase (HRPO) or catalytic amounts of either HRPO, myeloperoxidase, or bovine liver catalase together with glucose/glucose oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Coenzyme Q (ubiquinone or Q) plays a well known electron transport function in the respiratory chain, and recent evidence suggests that the reduced form of ubiquinone (QH2) may play a second role as a potent lipid-soluble antioxidant. To probe the function of QH2 as an antioxidant in vivo, we have made use of a Q-deficient strain of Saccharomyces cerevisiae harboring a deletion in the COQ3 gene [Clarke, C. F., Williams, W. & Teruya, J. H. (1991) J. Biol. Chem. 266, 16636-16644]. Q-deficient yeast and the wild-type parental strain were subjected to treatment with polyunsaturated fatty acids, which are prone to autoxidation and breakdown into toxic products. In this study we find that Q-deficient yeast are hypersensitive to the autoxidation products of linolenic acid and other polyunsaturated fatty acids. In contrast, the monounsaturated oleic acid, which is resistant to autoxidative breakdown, has no effect. The hypersensitivity of the coq3delta strains can be prevented by the presence of the COQ3 gene on a single copy plasmid, indicating that the sensitive phenotype results solely from the inability to produce Q. As a result of polyunsaturated fatty acid treatment, there is a marked elevation of lipid hydroperoxides in the coq3 mutant as compared with either wild-type or respiratory-deficient control strains. The hypersensitivity of the Q-deficient mutant can be rescued by the addition of butylated hydroxytoluene, alpha-tocopherol, or trolox, an aqueous soluble vitamin E analog. The results indicate that autoxidation products of polyunsaturated fatty acids mediate the cell killing and that QH2 plays an important role in vivo in protecting eukaryotic cells from these products.
Resumo:
Sediment samples from the Laptev Sea, taken during the 1993 RV Polarstern expedition ARK IX/4 and the RV Ivan Kireyev expedition TRANSDRIFT I, were investigated for the amount and composition of their organic carbon fractions. Of major interest was the identification of different processes controlling organic carbon deposition (i.e. terrigenous supply vs. surface water productivity). Long-chain unsaturated alkenones derived from prymnesiophytes, and fatty acids derived from diatoms and dinoflagellates, were analysed by means of gas chromatography and mass spectrometry. First results on the distribution of these biomarkers in surface sediments indicate that the surface water productivity signal is well preserved in the sediment data. This is shown by the distribution of the 16:1(n-7) and 20:5(n-3) fatty acids indicative for diatoms, and the excellent correlation with the chlorophyll a concentrations in the surface water masses and the biogenic-opal content and increased hydrogen indices of the sediments. The high concentration of these unsaturated fatty acids in shallow water sediments shows the recent deposition of the organic material. In deep-sea sediments, on the other hand, the concentrations are low. This decreased content is typical for phytoplankton material which has been degraded by microorganisms or autoxidation. In general, the alkenone concentrations are very low, suggesting low production rates by prymnesiophytes. Only at one station from the lower continental margin influenced by the inflow of Atlantic water masses, were some higher amounts of alkenones determined. Long-chain n-alkanes as well as high C/N ratios and low hydrogen indices indicate the importance of (fluvial) supply of terrigenous organic matter.