954 resultados para ANTIOXIDANT ENZYME-ACTIVITIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalase is an important antioxidant protein that protects organisms against various oxidative stresses by eliminating hydrogen peroxide. The full-length catalase cDNA of Chinese shrimp Fenneropenaeus chinensis was cloned from the hepatopancreas using degenerate primers by the method of 3' and 5' rapid amplification of cDNA ends PCR. The cDNA sequence consists of 1892 bp with a 1560 bp open reading frame, encoding 520 amino acids with high identity to invertebrate, vertebrate and even bacterial catalases. The sequence includes the catalytic residues His71, Asn144, and Tyr354. The molecular mass of the predicted protein is 58824.04 Da with an estimated pl of 6.63. Sequence comparison showed that the deduced amino acid sequence of F. chinensis catalase shares 96%, 73%, 71% and 70% identity with that of Pacific white shrimp Litopenaeus vannamei, Abalone Haliotis discus hannai, Zhikong scallop Chlamys farreri and Human Homo sapiens, respectively. Catalase transcripts were detected in hepatopancreas, hemocytes, lymphoid organ, intestine, ovary, muscle and gill. by real-time PCR. The variation of catalase mRNA transcripts in hemocytes and hepatopancreas was also quantified by real-time PCR and the result indicated that the catalase showed up-regulated expression trends in hemocytes at 14 h and in hepatopancreas at 37 h after injection with white spot syndrome virus (WSSV). (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study investigated whether differences exist in atherogen-induced migratory behaviors and basal antioxidant enzyme capacity of vascular smooth muscle cells (VSMC) from human coronary (CA) and internal mammary (IMA) arteries. Methods: Migration experiments were performed using the Dunn chemotaxis chamber. The prooxidant [NAD(P)H oxidase] and antioxidant [NOS, superoxide dismutase, catalase and glutathione peroxidase] enzyme activities were determined by specific assays. Results: Chemotaxis experiments revealed that while both sets of VSMC migrated towards platelet-derived growth factor-BB (1-50 ng/ml) and angiotensin II (1-50 nM), neither oxidized-LDL (ox-LDL, 25-100 ng/ml) nor native LDL (100 ng/ml) affected chemotaxis in IMA VSMC. However, high dose ox-LDL produced significant chemotaxis in CAVSMC that was inhibited by pravastatin (100 nM), mevastatin (10 nM), losartan (10 nM), enalapril (1 micro.M), and MnTBAP (a free radical scavenger, 50 micro.M). Microinjection experiments with isoprenoids i.e. geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) showed distinct involvement of small GTPases in atherogeninduced VSMC migration. Significant increases in antioxidant enzyme activities and nitrite production along with marked decreases in NAD(P)H oxidase activity and superoxide levels were determined in IMA versus CA VSMC. Conclusions: Enhanced intrinsic antioxidant capacity may confer on IMAVSMC resistance to migration against atherogenic agents. Drugs that regulate ox-LDL or angiotensin II levels also exert antimigratory effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines an experiment to determine if impairment of antioxident protective agents resulted in elevated ROS levels in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the relationship between blood antioxidant enzyme activities, indices of inflammatory status and a number of lifestyle factors in the Caerphilly prospective cohort study of ischaemic heart disease. The study began in 1979 and is based on a representative male population sample. Initially 2512 men were seen in phase I, and followed-up every 5 years in phases II and III; they have recently been seen in phase IV. Data on social class, smoking habit, alcohol consumption were obtained by questionnaire, and body mass index was measured. Antioxidant enzyme activities and indices of inflammatory status were estimated by standard techniques. Significant associations were observed for: age with α-1-antichymotrypsin (p<0.0001) and with caeruloplasmin, both protein and oxidase (p<0.0001); smoking habit with α-1-antichymotrypsin (p<0.0001), with caeruloplasmin, both protein and oxidase (p<0.0001) and with glutathione peroxidose (GPX) (p<0.0001); social class with α-1-antichymotrypsin (p<0.0001), with caeruloplasmin both protein (p<0.001) and oxidase (p<0.01) and with GPX (p<0.0001); body mass index with α-1-antichymotrypsin (p<0.0001) and with caeruloplasmin protein (p<0.001). There was no significant association between alcohol consumption and any of the blood enzymes measured. Factor analysis produced a three-factor model (explaining 65.9% of the variation in the data set) which appeared to indicate close inter-relationships among antioxidants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne`s muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (I) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum: and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inorganic arsenic (jAs), a known human carcinogen, acts as a tumor promoter in part by inducing a rapid burst of reactive oxygen species (ROS) in mammalian cells. This causes oxidative stress and a subsequent increase in the level of cellular glutathione (GSH). Glutathione, a ubiquitous reducing sulfhydryl tripeptide, is involved in ROS detoxification and its increase may be part of an adaptive response to the oxidative stress. Glutathione related enzymes including glutathione reductase (GR) and glutathione S-transferase (GST) also play key roles in these processes. In this study the regulatory effects of inorganic arsenite (As111) on the activities of GSH-related enzymes were investigated in cultured human keratinocytes. Substantial increases in GR enzyme activity and mRNA levels were shown in keratinocytes and other human cell lines after exposure to low, subtoxic, micromolar concentrations of As111 for 24 h. Upregulation of GSH synthesis paralleled the upregulation of GR as shown by increases in glutamatecysteine lyase (GeL) enzyme activity and mRNA levels, cystine uptake, and intracellular GSH levels. Glutathione S-transferase activity was also shown to increase slightly in keratinocytes, but not in fibroblasts or breast tumor cells. Overall the results show that sublethal arsenic induces a multicomponent response in human keratinocytes that involves upregulation of parts, but not all of the GSH system and counteracts the acute toxic effects of jAs. The upregulation of GR has not previously been shown to be an integral part of this response, although GR is critical for maintaining levels of reduced GSH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronary heart disease (CHD) remains the greatest killer in the Western world, and although the death rate from CHD has been falling, the current increased prevalence of major risk factors including obesity and diabetes, suggests it is likely that CHD incidence will increase over the next 20 years. In conjunction with preventive strategies, major advances in the treatment of acute coronary syndromes and myocardial infarction have occurred over the past 20 years. In particular the ability to rapidly restore blood flow to the myocardium during heart attack, using interventional cardiologic or thrombolytic approaches has been a major step forward. Nevertheless, while 'reperfusion' is a major therapeutic aim, the process of ischemia followed by reperfusion is often followed by the activation of an injurious cascade. While the pathogenesis of ischemia-reperfusion is not completely understood, there is considerable evidence implicating reactive oxygen species (ROS) as an initial cause of the injury.

ROS formed during oxidative stress can initiate lipid peroxidation, oxidize proteins to inactive states and cause DNA strand breaks, all potentially damaging to normal cellular function. ROS have been shown to be generated following routine clinical procedures such as coronary bypass surgery and thrombolysis, due to the unavoidable episode of ischemia-reperfusion. Furthermore, they have been associated with poor cardiac recovery post-ischemia, with recent studies supporting a role for them in infarction, necrosis, apoptosis, arrhythmogenesis and endothelial dysfunction following ischemia-reperfusion. In normal physiological condition, ROS production is usually homeostatically controlled by endogenous free radical scavengers such as superoxide dismutase, catalase, and the glutathione peroxidase and thioredoxin reductase systems. Accordingly, targeting the generation of ROS with various antioxidants has been shown to reduce injury following oxidative stress, and improve recovery from ischemia-reperfusion injury.

This review summarises the role of myocardial antioxidant enzymes in ischemia-reperfusion injury, particularly the glutathione peroxidase (GPX) and the thioredoxin reductase (TxnRed) systems. GPX and TxnRed are selenocysteine dependent enzymes, and their activity is known to be dependent upon an adequate supply of dietary selenium. Moreover, various studies suggest that the supply of selenium as a cofactor also regulates gene expression of these selenoproteins. As such, dietary selenium supplementation may provide a safe and convenient method for increasing antioxidant protection in aged individuals, particularly those at risk of ischemic heart disease, or in those undergoing clinical procedures involving transient periods of myocardial hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)