1000 resultados para ANORTHOSITE COMPLEX
Resumo:
Purpose: The component modules in the standard BEAMnrc distribution may appear to be insufficient to model micro-multileaf collimators that have tri-faceted leaf ends and complex leaf profiles. This note indicates, however, that accurate Monte Carlo simulations of radiotherapy beams defined by a complex collimation device can be completed using BEAMnrc's standard VARMLC component module.---------- Methods: That this simple collimator model can produce spatially and dosimetrically accurate micro-collimated fields is illustrated using comparisons with ion chamber and film measurements of the dose deposited by square and irregular fields incident on planar, homogeneous water phantoms.---------- Results: Monte Carlo dose calculations for on- and off-axis fields are shown to produce good agreement with experimental values, even upon close examination of the penumbrae.--------- Conclusions: The use of a VARMLC model of the micro-multileaf collimator, along with a commissioned model of the associated linear accelerator, is therefore recommended as an alternative to the development or use of in-house or third-party component modules for simulating stereotactic radiotherapy and radiosurgery treatments. Simulation parameters for the VARMLC model are provided which should allow other researchers to adapt and use this model to study clinical stereotactic radiotherapy treatments.
Resumo:
Ecological problems are typically multi faceted and need to be addressed from a scientific and a management perspective. There is a wealth of modelling and simulation software available, each designed to address a particular aspect of the issue of concern. Choosing the appropriate tool, making sense of the disparate outputs, and taking decisions when little or no empirical data is available, are everyday challenges facing the ecologist and environmental manager. Bayesian Networks provide a statistical modelling framework that enables analysis and integration of information in its own right as well as integration of a variety of models addressing different aspects of a common overall problem. There has been increased interest in the use of BNs to model environmental systems and issues of concern. However, the development of more sophisticated BNs, utilising dynamic and object oriented (OO) features, is still at the frontier of ecological research. Such features are particularly appealing in an ecological context, since the underlying facts are often spatial and temporal in nature. This thesis focuses on an integrated BN approach which facilitates OO modelling. Our research devises a new heuristic method, the Iterative Bayesian Network Development Cycle (IBNDC), for the development of BN models within a multi-field and multi-expert context. Expert elicitation is a popular method used to quantify BNs when data is sparse, but expert knowledge is abundant. The resulting BNs need to be substantiated and validated taking this uncertainty into account. Our research demonstrates the application of the IBNDC approach to support these aspects of BN modelling. The complex nature of environmental issues makes them ideal case studies for the proposed integrated approach to modelling. Moreover, they lend themselves to a series of integrated sub-networks describing different scientific components, combining scientific and management perspectives, or pooling similar contributions developed in different locations by different research groups. In southern Africa the two largest free-ranging cheetah (Acinonyx jubatus) populations are in Namibia and Botswana, where the majority of cheetahs are located outside protected areas. Consequently, cheetah conservation in these two countries is focussed primarily on the free-ranging populations as well as the mitigation of conflict between humans and cheetahs. In contrast, in neighbouring South Africa, the majority of cheetahs are found in fenced reserves. Nonetheless, conflict between humans and cheetahs remains an issue here. Conservation effort in South Africa is also focussed on managing the geographically isolated cheetah populations as one large meta-population. Relocation is one option among a suite of tools used to resolve human-cheetah conflict in southern Africa. Successfully relocating captured problem cheetahs, and maintaining a viable free-ranging cheetah population, are two environmental issues in cheetah conservation forming the first case study in this thesis. The second case study involves the initiation of blooms of Lyngbya majuscula, a blue-green algae, in Deception Bay, Australia. L. majuscula is a toxic algal bloom which has severe health, ecological and economic impacts on the community located in the vicinity of this algal bloom. Deception Bay is an important tourist destination with its proximity to Brisbane, Australia’s third largest city. Lyngbya is one of several algae considered to be a Harmful Algal Bloom (HAB). This group of algae includes other widespread blooms such as red tides. The occurrence of Lyngbya blooms is not a local phenomenon, but blooms of this toxic weed occur in coastal waters worldwide. With the increase in frequency and extent of these HAB blooms, it is important to gain a better understanding of the underlying factors contributing to the initiation and sustenance of these blooms. This knowledge will contribute to better management practices and the identification of those management actions which could prevent or diminish the severity of these blooms.
Resumo:
This paper argues a model of complex system design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of the efficient use of energy and material resource in life-cycle of buildings, the active involvement of the occupants in micro-climate control within buildings, and the natural environmental context. The interactions of the parameters compose a complex system of sustainable architectural design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The complexity theory of dissipative structure states a microscopic formulation of open system evolution, which provides a system design framework for the evolution of building environmental performance towards an optimization of sustainability in architecture.
Resumo:
This paper examines the role of intuition in the way that people operate unfamiliar devices. Intuition is a type of cognitive processing that is often non-conscious and utilises stored experiential knowledge. Intuitive interaction involves the use of knowledge gained from other products and/or experiences. Two initial experimental studies revealed that prior exposure to products employing similar features helped participants to complete set tasks more quickly and intuitively, and that familiar features were intuitively used more often than unfamiliar ones. A third experiment confirmed that performance is affected by a person's level of familiarity with similar technologies, and also revealed that appearance (shape, size and labelling of features) seems to be the variable that most affects time spent on a task and intuitive uses during that time. Age also seems to have an effect. These results and their implications are discussed.
Resumo:
Presentation about research projects that build understanding of urban design and interactions and plan for future opportunities. What do we need to model?
Resumo:
With the increasing complexity of modern day threats and the growing sophistication of interlinked and interdependent operating environments, Business Continuity Management (BCM) has emerged as a new discipline, offering a strategic approach to safeguarding organisational functions. Of significant interest is the application of BCM frameworks and strategies within critical infrastructure, and in particular the aviation industry. Given the increased focus on security and safety for critical infrastructures, research into the adoption of BCM principles within an airport environment provides valuable management outcomes and research into a previously neglected area of inquisition. This research has used a single case study methodology to identify possible impediments to BCM adoption and implementation by the Brisbane Airport Corporation (BAC). It has identified a number of misalignments between the required breadth of focus for a BCM program, identified differing views on specific roles and responsibilities required during a major disruptive event and illustrated the complexities of the Brisbane Airport which impede the understanding and implementation of effective Business Continuity Management Strategies.
Resumo:
In this paper we propose a new method for utilising phase information by complementing it with traditional magnitude-only spectral subtraction speech enhancement through Complex Spectrum Subtraction (CSS). The proposed approach has the following advantages over traditional magnitude-only spectral subtraction: (a) it introduces complementary information to the enhancement algorithm; (b) it reduces the total number of algorithmic parameters, and; (c) is designed for improving clean speech magnitude spectra and is therefore suitable for both automatic speech recognition (ASR) and speech perception applications. Oracle-based ASR experiments verify this approach, showing an average of 20% relative word accuracy improvements when accurate estimates of the phase spectrum are available. Based on sinusoidal analysis and assuming stationarity between observations (which is shown to be better approximated as the frame rate is increased), this paper also proposes a novel method for acquiring the phase information called Phase Estimation via Delay Projection (PEDEP). Further oracle ASR experiments validate the potential for the proposed PEDEP technique in ideal conditions. Realistic implementation of CSS with PEDEP shows performance comparable to state of the art spectral subtraction techniques in a range of 15-20 dB signal-to-noise ratio environments. These results clearly demonstrate the potential for using phase spectra in spectral subtractive enhancement applications, and at the same time highlight the need for deriving more accurate phase estimates in a wider range of noise conditions.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by “continuing education as usual” (The National Academies, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualization. These technologies have led to significant changes in the forms of mathematical thinking that are required beyond the classroom. This paper argues for the need to incorporate future-oriented understandings and competencies within the mathematics curriculum, through intellectually stimulating activities that draw upon multidisciplinary content and contexts. The paper also argues for greater recognition of children’s learning potential, as increasingly complex learners capable of dealing with cognitively demanding tasks.
Resumo:
An essential challenge for organizations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. Using three case examples, this paper explores how Enterprise 2.0 technologies achieve such goals, allowing for the transfer of knowledge by tapping into the tacit and explicit knowledge of disparate groups in complex engineering organizations. The paper is intended to be a timely introduction to the benefits and issues associated with the use of Enterprise 2.0 technologies with the aim of achieving the positive outcomes associated with knowledge management
Resumo:
Real-world business processes are resource-intensive. In work environments human resources usually multitask, both human and non-human resources are typically shared between tasks, and multiple resources are sometimes necessary to undertake a single task. However, current Business Process Management Systems focus on task-resource allocation in terms of individual human resources only and lack support for a full spectrum of resource classes (e.g., human or non-human, application or non-application, individual or teamwork, schedulable or unschedulable) that could contribute to tasks within a business process. In this paper we develop a conceptual data model of resources that takes into account the various resource classes and their interactions. The resulting conceptual resource model is validated using a real-life healthcare scenario.
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.