966 resultados para ANNEXIN A1
Resumo:
Skeletal muscle complaints are a common consequence of cholesterol-lowering therapy. Transverse tubular (T-tubular) vacuolations occur in patients having statin-associated myopathy and, to a lesser extent, in statin-treated patients without myopathy. We have investigated quantitative changes in T-tubular morphology and looked for early indicators of T-tubular membrane repair in skeletal muscle biopsy samples from patients receiving cholesterol-lowering therapy who do not have myopathic side effects. Gene expression and protein levels of incipient membrane repair proteins were monitored in patients who tolerated statin treatment without myopathy and in statin-naive subjects. In addition, morphometry of the T-tubular system was performed. Only the gene expression for annexin A1 was up-regulated, whereas the expression of other repair genes remained unchanged. However, annexin A1 and dysferlin protein levels were significantly increased. In statin-treated patients, the volume fraction of the T-tubular system was significantly increased, but the volume fraction of the sarcoplasmic reticulum remained unchanged. A complex surface structure in combination with high mechanical loads makes skeletal muscle plasma membranes susceptible to injury. Ca(2+)-dependent membrane repair proteins such as dysferlin and annexin A1 are deployed at T-tubular sites. The up-regulation of annexin A1 gene expression and protein points to this protein as a biomarker for T-tubular repair.
Resumo:
PURPOSE: We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. MATERIALS AND METHODS: Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. RESULTS: Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. CONCLUSIONS: Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function.
Resumo:
Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The inflammatory response is a protective process of the body to counteract xenobiotic penetration and injury, although in disease this response can become deregulated. There are endogenous biochemical pathways that operate in the host to keep inflammation under control. Here we demonstrate that the counter-regulator annexin 1 (AnxA1) is critical for controlling experimental endotoxemia. Lipopolysaccharide (LPS) markedly activated the AnxA1 gene in epithelial cells, neutrophils, and peritoneal, mesenteric, and alveolar macrophages-cell types known to function in experimental endotoxemia. Administration of LPS to AnxA1-deficient mice produced a toxic response characterized by organ injury and lethality within 48 hours, a phenotype rescued by exogenous application of low doses of the protein. In the absence of AnxA1, LPS generated a deregulated cellular and cytokine response with a marked degree of leukocyte adhesion in the microcirculation. Analysis of LPS receptor expression in AnxA1-null macrophages indicated an aberrant expression of Toll-like receptor 4. In conclusion, this study has detailed cellular and biochemical alterations associated with AnxA1 gene deletion and highlighted the impact of this protective circuit for the correct functioning of the homeostatic response to sublethal doses of LPS. Copyright © American Society for Investigative Pathology.
Resumo:
BACKGROUND: Annexin 1 is a 37-kDa protein that has complex intra- and extracellular effects. To discover whether the absence of this protein alters bone development, we monitored this event in the annexin-A1 null mice in comparison with littermate wild-type controls. METHODS: Radiographic and densitometry methods were used for the assessment of bone in annexin-A1 null mice at a gross level. We used whole-skeleton staining, histological analysis, and Western blotting techniques to monitor changes at the tissue and cellular levels. RESULTS: There were no gross differences in the appendicular skeleton between the genotypes, but an anomalous development of the skull was observed in the annexin-A1 null mice. This was characterized in the newborn annexin-A1 null animals by a delayed intramembranous ossification of the skull, incomplete fusion of the interfrontal suture and palatine bone, and the presence of an abnormal suture structure. The annexin-A1 gene was shown to be active in osteocytes during this phase and COX-2 was abundantly expressed in cartilage and bone taken from annexin-A1 null mice. CONCLUSIONS: Expression of the annexin-A1 gene is important for the normal development of the skull in mice, possibly through the regulation of osteoblast differentiation and a secondary effect on the expression of components of the cPLA2-COX-2 system. © 2007 Wiley-Liss, Inc.
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study describes the seminal plasma proteome of Bos indicus bulls. Fifty-six, 24-month old Australian Brahman sires were evaluated and subjected to electroejaculation. Seminal plasma proteins were separated by 2-D SDS-PAGE and identified by mass spectrometry. The percentage of progressively motile and morphologically normal sperm of the bulls were 70.4±2.3 and 64±3.2%, respectively. A total of 108 spots were identified in the 2-D maps, corresponding to 46 proteins. Binder of sperm proteins accounted for 55.8% of all spots detected in the maps and spermadhesins comprised the second most abundant constituents. Other proteins of the Bos indicus seminal plasma include clusterin, albumin, transferrin, metalloproteinase inhibitor 2, osteopontin, epididymal secretory protein E1, apolipoprotein A-1, heat shock 70kDa protein, glutathione peroxidase 3, cathelicidins, alpha-enolase, tripeptidyl-peptidase 1, zinc-alpha-2-glycoprotein, plasma serine protease inhibitor, beta 2-microglobulin, proteasome subunit beta type-4, actin, cathepsins, nucleobinding-1, protein S100-A9, hemoglobin subunit alpha, cadherin-1, angiogenin-1, fibrinogen alpha and beta chain, ephirin-A1, protein DJ-1, serpin A3-7, alpha-2-macroglobulin, annexin A1, complement factor B, polymeric immunoglobulin receptor, seminal ribonuclease, ribonuclease-4, prostaglandin-H2 D-isomarase, platelet-activating factor acetylhydrolase, and phosphoglycerate kinase In conclusion, this work uniquely portrays the Bos indicus seminal fluid proteome, based on samples from a large set of animals representing the Brahman cattle of the tropical Northern Australia. Based on putative biochemical attributes, seminal proteins act during sperm maturation, protection, capacitation and fertilization.
Resumo:
This thesis has been focused on the proteomic characterization of human saliva from donors of different ages, starting from birth up to adult age, and pediatric brain tumor tissues. The first study has been performed in order to compare the acid-insoluble fraction of saliva from preterm with at-term newborns and adults and establish if differences exist. In the second study medulloblastoma and pilocytic astrocytoma pediatric brain tumor extracts have been compared. In both studies 2- DE analysis was coupled with high resolution tandem mass spectrometry (MS/MS). The proteomic characterization of the acid-insoluble fractions of saliva from preterm newborns allowed to integrate data previously obtained on the acid-soluble fraction by HPLC-electrospray ionization (ESI)-mass spectrometry (MS), and to evidence several differences between preterm newborns, at-term newborns and adults. Spots differentially expressed between the three groups, according to image analysis of the gels, were submitted to in-gel tryptic digestion and the peptide mixture analyzed by high performance HPLC-ESI-MS/MS for their characterization. By this strategy, we identified three over-expressed proteins in atterm newborns with respect to preterm newborns and adults (BPI fold-containing family A member 1, two proteoforms of annexin A1, and keratin type 1 cytoskeletal 13), and several over-expressed proteins in adults (fatty acid-binding protein, S100A6, S100A7, two proteoforms of S100A9, several proteoforms of prolactin-inducible protein, Ig kappa chain, two proteoforms of cystatin SN, one proteoform of cystatin S and several proteoforms of α-amylase 1). Moreover, for the first time, it was possible to assign by MS/MS four spots of human saliva 2-DE, already detected by other authors, to different proteoforms of S100A9. The strategy applied used a sequential staining protocol to the 2-DE gels, first with Pro-Q Diamond, that allows specific detection of phosphoproteins, and successively with total protein SYPRO Ruby stain. In the second study, proteomic analysis of two pediatric brain tumor tissues pointed out differences between medulloblastoma, the prevalent malignant tumor in childhood, and pilocytic astrocytoma, the most common, that only rarely shows a malignant progression. Due to the limited availability of bioptic tissue, the study was performed on pooled tumor tissues, and was focused on acid-insoluble fraction to integrate the characterization performed by a group of colleagues in Rome on the acid-soluble fraction by high performance HPLC-ESI-MS/MS. The results indicated that the two tumors exhibit different proteomic profiles and evidenced interesting differential expression of several proteins. Among them, peroxiredoxin- 1, peptidyl-prolyl cis–trans isomerase A, heterogeneous nuclear ribonucleoproteins A2/B1, mitochondrial isoform of malate dehydrogenase, nucleoside diphosphate kinase A, glutathione S-transferase P and fructose bisphosphate aldolase A resulted significantly over-expressed in medulloblastoma while glial fibrillary acidic protein, serotransferrin, α crystallin B chain, ferritin light chain, annexin A5, fatty acid-binding protein (brain), sorcin and apolipoprotein A-I resulted significantly over-expressed in pilocytic astrocytoma. In conclusion, the work done allowed to evidence the usefulness of using an integrated bottom-up/top-down approach, based on 2-DE-MS analysis and high performance MS in order to obtain a complete characterization of the proteome under investigation, revealing and identifying, not only peptides and small proteins, but also proteins with higher MW, that often it is not possible to identify by using exclusively a top-down ESI-MS approach.