994 resultados para ALPHA-KETOGLUTARATE DEHYDROGENASE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The xoxF gene, encoding a pyrroloquinoline quinone-dependent methanol dehydrogenase, is found in all known proteobacterial methylotrophs. In several newly discovered methylotrophs, XoxF is the active methanol dehydrogenase, catalysing the oxidation of methanol to formaldehyde. Apart from that, its potential role in methylotrophy and carbon cycling is unknown. So far, the diversity of xoxF in the environment has received little attention. We designed PCR primer sets targeting clades of the xoxF gene, and used 454 pyrosequencing of PCR amplicons obtained from DNA of four coastal marine environments for a unique assessment of the diversity of xoxF in these habitats. Phylogenetic analysis of the data obtained revealed a high diversity of xoxF genes from two of the investigated clades, and substantial differences in sequence composition between environments. Sequences were classified as being related to a wide range of both methylotrophs and non-methylotrophs from Alpha-, Beta- and Gammaproteobacteria. The most prominent sequences detected were related to the family Rhodobacteraceae, the genus Methylotenera and the OM43 clade of Methylophilales, and are thus related to organisms that employ XoxF for methanol oxidation. Furthermore, our analyses revealed a high degree of so far undescribed sequences, suggesting a high number of unknown species in these habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzyme immobilization in nanostructured films may be useful for a number of biomimetic systems, particularly if suitable matrixes are identified. Here we show that alcohol dehydrogenase (ADH) has high affinity toward a negatively charged phospholipid, dimyristoylphosphatidic acid (DMPA), which forms a Langmuir monolayer at an air-water interface. Incorporation of ADH into the DMPA monolayer was monitored with Surface pressure measurements; and polarization-modulation infrared reflection absorption spectroscopy, with the alpha-helices from ADH being mainly oriented parallel to the water surface. ADH remained at the interface even at high surface pressures, thus allowing deposition of Langmuir-Blodgett (LB) films from the DMPA-ADH film. Indeed, interaction with DMPA enhances the transfer of ADH, where the mass transferred onto a solid support increased from 134 ng for ADH on a Gibbs monolayer to 178 ng for an LB film with DMPA. With fluorescence spectroscopy it was possible to confirm that the ADH structure was preserved even after one month of the LB deposition. ADH-containing films deposited onto gold-interdigitated electrodes were employed in a sensor array capable of detecting ethanol at concentrations down to 10 ppb (in volume), using impedance spectroscopy as the method of detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first step of the pentose-phosphate pathway which supplies cells with ribose 5-phosphate (R5P) and NADPH. R5P is the precursor for the biosynthesis of nucleotides while NADPH is the cofactor of several dehydrogenases acting in a broad range of biosynthetic processes and in the maintenance of the cellular redox state. RNA interference-mediated reduction of G6PDH levels in bloodstream-form Trypanosoma brucei validated this enzyme as a drug target against Human African Trypanosomiasis. Dehydroepiandrosterone (DHEA), a human steroidal pro-hormone and its derivative 16 alpha-bromoepiandrosterone (16BrEA) are uncompetitive inhibitors of mammalian G6PDH. Such steroids are also known to enhance the immune response in a broad range of animal infection models. It is noteworthy that the administration of DHEA to rats infected by Trypanosoma cruzi, the causative agent of Human American Trypanosomiasis (also known as Chagas` disease), reduces blood parasite levels at both acute and chronic infection stages. In the present work, we investigated the in vitro effect of DHEA derivatives on the proliferation of T. cruzi epimastigotes and their inhibitory effect on a recombinant form of the parasite`s G6PDH (TcG6PDH). Our results show that DHEA and its derivative epiandrosterone (EA) are uncompetitive inhibitors of TcG6PDH, with K(i) values of 21.5 +/- 0.5 and 4.8 +/- 0.3 mu M, respectively. Results from quantitative inhibition assays indicate 16BrEA as a potent inhibitor of TcG6PDH with an IC(50) of 86 +/- 8 nM and those from in vitro cell viability assays confirm its toxicity for T. cruzi epimastigotes, with a LD(50) of 12 +/- 8 mu M. In summary, we demonstrated that, in addition to host immune response enhancement, 16BrEA has a direct effect on parasite viability, most likely as a consequence of TcG6PDH inhibition. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the GPD2 gene from Saccharomyces cerevisiae, which codifies for the enzyme glycerol-3-phosphate dehydrogenase (GPDH), was cloned from the pPICZ-alpha expression vector and used with the purpose of inducing the extracellular expression of the glycerol-3-phosphate dehydrogenase under the control of the methanol-regulated AOX promoter. The presence of the GPD2 insert was confirmed by PCR analysis. Pichia pastoris X-33 (Mut(+)) was transformed with linearized plasmids by electroporation and transformants were selected on YPDS plates containing 100 mu g/mL of zeocin. Several clones were selected and the functionality of this enzyme obtained in a culture medium was assayed. Among the mutants tested, one exhibited 3.1 x 10(-2) U/mg of maximal activity. Maximal enzyme activity was achieved at 6 days of growth. Medium composition and pre-induction osmotic stress influenced protein production. Pre-induction osmotic stress (culturing cells in medium with either 0.35 M sodium chloride or 1.0 M sorbitol for 4h prior to induction) led to an increase in cell growth with sorbitol and resulted in a significant increase in GPDH productivity with sodium chloride in 24h of induction approximately fivefold greater than under standard conditions (without pre-induction). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contamination with cadmium compounds poses high potential risk for the health of populations and for this reason the treatment of their toxic effects should urgently be established. The present study was carried out to determine whether or-tocopherol intake can protect tissues against damage induced by cadmium, and to clarify the contribution of superoxide radicals (O-2(-)) in this process. Cadmium chloride was tested for tissue damage by a single intraperitoneal injection of Cd2+ ions (2 mg Kg(-1)). To determine the potential therapeutic effect of Vitamin E, a group of Cd2+-treated rats received a drinking solution of or-tocopherol (40 mg l(-1)) for 15 days. Cadmium induced increased serum creatinine and total lactate dehydrogenase, reflecting renal and cardiac damage. The increased lipoperoxide and decreased Cu-Zn superoxide dismutase levels indicated the generation of superoxide radicals in cadmium-treated rats. Tocopherol induced increased serum high-density lipoprotein and depressed the toxic effects of Ca2+ alone, since creatinine and lactate dehydrogenase determinations were recovered to the control values. Tocopherol decreased lipoperoxide and led the superoxide dismutase activities to approach those of the control values. We concluded that superoxide radicals are produced as mediators of cadmium toxicity. Tocopherol possesses a significant anti-radical activity and inhibits the cadmium effect on superoxide dismutase activity. Tocopherol also protected tissues from the toxic effects of cadmium by a direct antioxidant action which decreased lipoperoxide formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Susceptibility to infections, autoimmune disorders and tumor progression is strongly influenced by the activity of the endocrine and nervous systems in response to a stressful stimulus. When the adaptive system is switched on and off efficiently, the body is able to recover from the stress imposed. However, when the system is activated repeatedly or the activity is sustained, as during chronic or excessive stress, an allostatic load is generated, which can lead to disease over long periods of time. We investigated the effects of chronic cold stress in BALB/c mice (4 degrees C/4 h daily for 7 days) on functions of macrophages. We found that chronic cold stress induced a regulatory phenotype in macrophages, characterized by diminished phagocytic ability, decreased TNF-alpha and IL-6 and increased IL-10 production. In addition, resting macrophages from mice exposed to cold stress stimulated spleen cells to produce regulatory cytokines, and an immunosuppressive state that impaired stressed mice to control Trypanosoma cruzi proliferation. These regulatory effects correlated with an increase in macrophage expression of 11 beta-hydroxysteroid dehydrogenase, an enzyme that converts inactive glucocorticoid into its active form. As stress is a common aspect of modern life and plays a role in the etiology of many diseases, the results of this study are important for improving knowledge regarding the neuro-immune-endocrine interactions that occur during stress and to highlight the role of macrophages in the immunosuppression induced by chronic stress. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rational engineering of enzymes involves introducing key amino acids guided by a knowledge of protein structure to effect a desirable change in function. To date, all successful attempts to change specificity have been limited to substituting individual amino acids within a protein fold. However, the infant field of protein engineering will only reach maturity when changes in function can be generated by rationally engineering secondary structures. Guided by x-ray crystal structures and molecular modeling, site-directed mutagenesis has been used to systematically invert the coenzyme specificity of Thermus thermophilus isopropylmalate dehydrogenase from a 100-fold preference for NAD to a 1000-fold preference for NADP. The engineered mutant, which is twice as active as wild type, contains four amino acid substitutions and an alpha-helix and loop that replaces the original beta-turn. These results demonstrate that rational engineering of secondary structures to produce enzymes with novel properties is feasible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to determine the effects of dietary antioxidant supplementation with alpha-tocopherol and alpha-lipoic acid on cyclosporine A (cyclosporine)-induced alterations to erythrocyte and plasma redox balance. Rats were randomly assigned to either control, antioxidant (alpha-tocopherol 1000 IU/kg diet and alpha-lipoic acid 1.6 g/kg diet), cyclosporine (25 mg/kg/day), or cyclosporine + antioxidant treatments. Cyclosporine was administered for 7 days after an 8 week feeding period. Plasma was analysed for alpha-tocopherol, total antioxidant capacity, malondialdehyde, and creatinine. Erythrocytes were analysed for glutathione, methaemoglobin, superoxide dismutase, catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, alpha-tocopherol and malondialdehye. Cyclosporine administration caused a significant decrease in superoxide dismutase activity (P < 0.05 control versus cyclosporine) and this was improved by antioxidant supplementation (P < 0.05 cyclosporine versus cyclosporine + antioxidant; P < 0.05 control versus cyclosporine + antioxidant). Animals receiving cyclosporine and antioxidants showed significantly increased (P < 0.05) catalase activity compared to both groups not receiving cyclosporine. Cyclosporine administration induced significant increases in plasma malondialdehyde and creatinine concentration (P < 0.05 control versus cyclosporine). Antioxidant supplementation prevented the cyclosporine induced increase in plasma creatinine (P < 0.05 cyclosporine versus cyclosporine + antioxidant; P > 0.05 control versus cyclosporine + antioxidant), however, supplementation did not alter the cyclosporine induced increase in plasma malondialdehyde concentration (P > 0.05 cyclosporine versus cyclosporine + antioxidant). Antioxidant supplementation resulted in significant increases (P < 0.05) in plasma and erythrocyte alpha-tocopherol in both of the supplemented groups compared to non-supplemented groups. In conclusion, dietary supplementation with alpha-tocopherol and alpha-lipoic acid enhanced the erythrocyte antioxidant defence and reduced nephrotoxicity in cyclosporine treated animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer cells have been noted to have an altered metabolic phenotype for over ninety years. In the presence of oxygen, differentiated cells predominately utilise the tricarboxylic acid (TCA) cycle and oxidative phosphorylation to efficiently produce energy and the metabolites necessary for protein and lipid synthesis. However, in hypoxia, this process is altered and cells switch to a higher rate of glycolysis and lactate production to maintain their energy and metabolic needs. In cancer cells, glycolysis is maintained at a high rate, even in the presence of oxygen; a term described as “aerobic glycolysis”. Tumour cells are rapidly dividing and have a much greater need for anabolism compared to normal differentiated cells. Rapid glucose metabolism enables faster ATP production as well as a greater redistribution of carbons to nucleotide, protein, and fatty acid synthesis, thus maximising cell growth. Recently, other metabolic changes, driven by mutations in genes related to the TCA cycle, indicate an alternative role for metabolism in cancer, the “oncometabolite”. This is where a particular metabolite builds up within the cell and contributes to the tumorigenic process. One of these genes is isocitrate dehydrogenase (IDH) IDH is an enzyme that forms part of the tricarboxylic acid (TCA) cycle and converts isocitrate to α-ketoglutarate (α-KG). It exists in three isoforms; IDH1, IDH2 and IDH3 with the former present in the cytoplasm and the latter two in the mitochondria. Point mutations have been identified in the IDH1 and IDH2 genes in glioma which result in a gain of function by converting α-KG to 2-hydroxyglutarate (2HG), an oncometabolite. 2HG acts as a competitive inhibitor of the α-KG dependent dioxygenases, a superfamily of enzymes that are involved in numerous cellular processes such as DNA and histone demethylation. It was hypothesised that the IDH1 mutation would result in other metabolic changes in the cell other than 2HG production, and could potentially identify pathways which could be targeted for therapeutic treatment. In addition, 2HG can act as a potential competitive inhibitor of α-KG dependent dioxygenases, so it was hypothesised that there would be an effect on histone methylation. This may alter gene expression and provide a mechanism for tumourogenesis and potentially identify further therapeutic targets. Metabolic analysis of clinical tumour samples identified changes associated with the IDH1 mutation, which included a reduction in α-KG and an increase in GABA, in addition to the increase in 2HG. This was replicated in several cell models, where 13C labelled metabolomics was also used to identify a possible increase in metabolic flux from glutamate to GABA, as well as from α-KG to 2HG. This may provide a mechanism whereby the cell can bypass the IDH1 mutation as GABA can be metabolised to succinate in the mitochondria by GABA transaminase via the GABA shunt. JMJ histone demethylases are a subset of the α-KG dependent dioxygenases, and are involved in removing methyl groups from histone tails. Changes in histone methylation are associated with changes in gene expression depending on the site and extent of chemical modification. To identify whether the increase in 2HG and fall in α-KG was associated with inhibition of histone demethylases a histone methylation screen was used. The IDH1 mutation was associated with an increase in methylation of H3K4, which is associated with gene activation. ChiP and RNA sequencing identified an increase in H3K4me3 at the transcription start site of the GABRB3 subunit, resulting in an increase in gene expression. The GABRB3 subunit forms part of the GABA-A receptor, a chloride channel, which on activation can reduce cell proliferation. The IDH1 mutation was associated with an increase in GABA and GABRB3 subunit of the GABA-A receptor. This raises the possibility of GABA transaminase as a potential therapeutic target. Inhibition of this enzyme could reduce GABA metabolism, potentially reducing any beneficial effect of the GABA shunt in IDH1 mutant tumours, and increasing activation of the GABA-A receptor by increasing the concentration of GABA in the brain. This in turn may reduce cell proliferation, and could be achieved by using Vigabatrin, a GABA transaminase inhibitor licensed for use in epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.