952 resultados para ALL-OPTICAL NETWORKS


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally investigate a multi-parameter optimization of conditions for generation of triangular pulses in normal dispersion fiber. We find that triangular pulses suitable for all optical processing applications can be generated for a wide range of input pulse chirps but that triangular pulse quality and stability is improved with increased input pulse chirp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel all-optical signal processor for use at a return-to-zero receiver utilising loop mirror intensity filtering and nonlinear pulse broadening in normal dispersion fibre. The device offers reamplification and cleaning up of the optical signals, and phase margin improvement. The efficiency of the technique is demonstrated by application to 40 Gbit/s data transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-optical technologies for data processing and signal manipulation are expected to play a major role in future optical communications. Nonlinear phenomena occurring in optical fibre have many attractive features and great, but not yet fully exploited potential in optical signal processing. Here, we overview our recent results and advances in developing novel photonic techniques and approaches to all-optical processing based on fibre nonlinearities. Amongst other topics, we will discuss phase-preserving optical 2R regeneration, the possibility of using parabolic/flat-top pulses for optical signal processing and regeneration, and nonlinear optical pulse shaping. A method for passive nonlinear pulse shaping based on pulse pre-chirping and propagation in a normally dispersive fibre will be presented. The approach provides a simple way of generating various temporal waveforms of fundamental and practical interest. Particular emphasis will be given to the formation and characterization of pulses with a triangular intensity profile. A new technique of doubling/copying optical pulses in both the frequency and time domains using triangular-shaped pulses will be also introduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiwavelength all-optical regeneration has the potential to substantially increase both the capacity and scalability of future optical networks. In this paper, we review recent promising developments in this area. First, we recall the basic principles of multichannel regeneration of high bit rate signals in optical communication systems before discussing the current technological approaches. We then describe in detail two fiber-based multichannel 2R regeneration techniques for return-to-zero-on-off keying based on 1) dispersion managed systems and 2) direction and polarization multiplexing. We present results illustrating the levels of performance so far achieved and discuss various practical issues and prospects for further performance enhancement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review recent advances in all-optical OFDM technologies and discuss the performance of a field trial of a 2 Tbit/s Coherent WDM over 124 km with distributed Raman amplification. The results indicate that careful optimisation of the Raman pumps is essential. We also consider how all-optical OFDM systems perform favourably against energy consumption when compared with alternative coherent detection schemes. We argue that, in an energy constrained high-capacity transmission system, direct detected all-optical OFDM with `ideal' Raman amplification is an attractive candidate for metro area datacentre interconnects with ~100 km fibre spans, with an overall energy requirement at least three times lower than coherent detection techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium-doped fibre amplifiers (EDFA’s) are a key technology for the design of all optical communication systems and networks. The superiority of EDFAs lies in their negligible intermodulation distortion across high speed multichannel signals, low intrinsic losses, slow gain dynamics, and gain in a wide range of optical wavelengths. Due to long lifetime in excited states, EDFAs do not oppose the effect of cross-gain saturation. The time characteristics of the gain saturation and recovery effects are between a few hundred microseconds and 10 milliseconds. However, in wavelength division multiplexed (WDM) optical networks with EDFAs, the number of channels traversing an EDFA can change due to the faulty link of the network or the system reconfiguration. It has been found that, due to the variation in channel number in the EDFAs chain, the output system powers of surviving channels can change in a very short time. Thus, the power transient is one of the problems deteriorating system performance. In this thesis, the transient phenomenon in wavelength routed WDM optical networks with EDFA chains was investigated. The task was performed using different input signal powers for circuit switched networks. A simulator for the EDFA gain dynamicmodel was developed to compute the magnitude and speed of the power transients in the non-self-saturated EDFA both single and chained. The dynamic model of the self-saturated EDFAs chain and its simulator were also developed to compute the magnitude and speed of the power transients and the Optical signal-to-noise ratio (OSNR). We found that the OSNR transient magnitude and speed are a function of both the output power transient and the number of EDFAs in the chain. The OSNR value predicts the level of the quality of service in the related network. It was found that the power transients for both self-saturated and non-self-saturated EDFAs are close in magnitude in the case of gain saturated EDFAs networks. Moreover, the cross-gain saturation also degrades the performance of the packet switching networks due to varying traffic characteristics. The magnitude and the speed of output power transients increase along the EDFAs chain. An investigation was done on the asynchronous transfer mode (ATM) or the WDM Internet protocol (WDM-IP) traffic networks using different traffic patterns based on the Pareto and Poisson distribution. The simulator is used to examine the amount and speed of the power transients in Pareto and Poisson distributed traffic at different bit rates, with specific focus on 2.5 Gb/s. It was found from numerical and statistical analysis that the power swing increases if the time interval of theburst-ON/burst-OFF is long in the packet bursts. This is because the gain dynamics is fast during strong signal pulse or with long duration pulses, which is due to the stimulatedemission avalanche depletion of the excited ions. Thus, an increase in output power levelcould lead to error burst which affects the system performance.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-optical technologies for data processing and signal manipulation are expected to play a major role in future optical communications. Nonlinear phenomena occurring in optical fibre have many attractive features and great, but not yet fully exploited potential in optical signal processing. Here, we overview our recent results and advances in developing novel photonic techniques and approaches to all-optical processing based on fibre nonlinearities. Amongst other topics, we will discuss phase-preserving optical 2R regeneration, the possibility of using parabolic/flat-top pulses for optical signal processing and regeneration, and nonlinear optical pulse shaping. A method for passive nonlinear pulse shaping based on pulse pre-chirping and propagation in a normally dispersive fibre will be presented. The approach provides a simple way of generating various temporal waveforms of fundamental and practical interest. Particular emphasis will be given to the formation and characterization of pulses with a triangular intensity profile. A new technique of doubling/copying optical pulses in both the frequency and time domains using triangular-shaped pulses will be also introduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a design of a fast all-optical core-node processor that performs packet-forwarding in optical networks without header-modification. The design is based on bit-serial architecture using TOADs as logic-gates that perform modulo-arithmetic to forward packets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review recent advances in all-optical OFDM technologies and discuss the performance of a field trial of a 2 Tbit/s Coherent WDM over 124 km with distributed Raman amplification. The results indicate that careful optimisation of the Raman pumps is essential. We also consider how all-optical OFDM systems perform favourably against energy consumption when compared with alternative coherent detection schemes. We argue that, in an energy constrained high-capacity transmission system, direct detected all-optical OFDM with `ideal' Raman amplification is an attractive candidate for metro area datacentre interconnects with ~100 km fibre spans, with an overall energy requirement at least three times lower than coherent detection techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We summarize our research work on the design and development of an add-drop multiplexer for spectrally overlapping OFDM signals. The standard node functions of sub-channel drop, extraction and insertion were obtained whilst the signals remained fully in the optical domain. Numerical simulations have been carried out to identify the main sources of degradation and to benchmark the architectural performance against critical design parameters, whereas the experimental demonstration of the scheme has been achieved for both single quadrature and dual quadrature signals. The reported scheme enables a fully flexible node compatible with future terabit per second super-channel transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Next-generation networks are likely to be non-uniform in all their aspects, including number of lightpaths carried per link, number of wavelengths per link, number of fibres per link, asymmetry of the links, and traffic flows. Routing and wavelength allocation models generally assume that the optical network is uniform and that the number of wavelengths per link is a constant. In practice however, some nodes and links carry heavy traffic and additional wavelengths are needed in those links. We study a wavelength-routed optical network based on the UK JANET topology where traffic demands between nodes are assumed to be non-uniform. We investigate how network capacity can be increased by locating congested links and suggesting cost-effective upgrades. Different traffic demands patterns, hop distances, number of wavelengths per link, and routing algorithms are considered. Numerical results show that a 95% increase in network capacity is possible by overlaying fibre on just 5% of existing links. We conclude that non-uniform traffic allocation can be beneficial to localize traffic in nodes and links deep in the network core and provisioning of additional resources there can efficiently and cost-effectively increase network capacity. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a strategy for the solution of the WDM optical networks planning. Specifically, the problem of Routing and Wavelength Allocation (RWA) in order to minimize the amount of wavelengths used. In this case, the problem is known as the Min-RWA. Two meta-heuristics (Tabu Search and Simulated Annealing) are applied to take solutions of good quality and high performance. The key point is the degradation of the maximum load on the virtual links in favor of minimization of number of wavelengths used; the objective is to find a good compromise between the metrics of virtual topology (load in Gb/s) and of the physical topology (quantity of wavelengths). The simulations suggest good results when compared to some existing in the literature.