977 resultados para AIR-POLLUTION
Resumo:
ABSTRACT OBJECTIVE To analyze the impact of air pollution on respiratory and cardiovascular morbidity of children and adults in the city of Vitoria, state of Espirito Santo. METHODS A study was carried out using time-series models via Poisson regression from hospitalization and pollutant data in Vitoria, ES, Southeastern Brazil, from 2001 to 2006. Fine particulate matter (PM10), sulfur dioxide (SO2), and ozone (O3) were tested as independent variables in simple and cumulative lags of up to five days. Temperature, humidity and variables indicating weekdays and city holidays were added as control variables in the models. RESULTS For each increment of 10 µg/m3 of the pollutants PM10, SO2, and O3, the percentage of relative risk (%RR) for hospitalizations due to total respiratory diseases increased 9.67 (95%CI 11.84-7.54), 6.98 (95%CI 9.98-4.17) and 1.93 (95%CI 2.95-0.93), respectively. We found %RR = 6.60 (95%CI 9.53-3.75), %RR = 5.19 (95%CI 9.01-1.5), and %RR = 3.68 (95%CI 5.07-2.31) for respiratory diseases in children under the age of five years for PM10, SO2, and O3, respectively. Cardiovascular diseases showed a significant relationship with O3, with %RR = 2.11 (95%CI 3.18-1.06). CONCLUSIONS Respiratory diseases presented a stronger and more consistent relationship with the pollutants researched in Vitoria. A better dose-response relationship was observed when using cumulative lags in polynomial distributed lag models.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil de Engenharia de Sistemas Ambientais
Resumo:
In Tbilisi according to the data of the complex monitoring of light ions concentration, radon and sub-micron aerosols the effect of feedback of intensity of ionizing radiation with the light ions content in atmosphere is discovered.
Resumo:
Results of an analysis of the influence of fogs on air pollutions in Tbilisi (the capital of Georgia) in December – February 2009-2011 at the windless weather are presented.
Resumo:
The increase in mortality risk associated with long-term exposure to particulate air pollution is one of the most important, and best-characterised, effects of air pollution on health. This report presents estimates of the size of this effect on mortality in local authority areas in the UK, building upon the attributable fractions reported as an indicator in the public health outcomes framework for England. It discusses the concepts and assumptions underlying these calculations and gives information on how such estimates can be made. The estimates are expected to be useful to health and wellbeing boards when assessing local public health priorities, as well as to others working in the field of air quality and public health. The estimates of mortality burden are based on modelled annual average concentrations of fine particulate matter (PM2.5) in each local authority area originating from human activities. Local data on the adult population and adult mortality rates is also used. Central estimates of the fraction of mortality attributable to long-term exposure to current levels of anthropogenic (human-made) particulate air pollution range from around 2.5% in some local authorities in rural areas of Scotland and Northern Ireland and between 3 and 5% in Wales, to over 8% in some London boroughs. Because of uncertainty in the increase in mortality risk associated with ambient PM2.5, the actual burdens associated with these modelled concentrations could range from approximately one-sixth to about double these figures. Thus, current levels of particulate air pollution have a considerable impact on public health. Measures to reduce levels of particulate air pollution, or to reduce exposure of the population to such pollution, are regarded as an important public health initiative.
Resumo:
Background Maternal exposure to air pollution has been related to fetal growth in a number of recent scientific studies. The objective of this study was to assess the association between exposure to air pollution during pregnancy and anthropometric measures at birth in a cohort in Valencia, Spain. Methods Seven hundred and eighty-five pregnant women and their singleton newborns participated in the study. Exposure to ambient nitrogen dioxide (NO2) was estimated by means of land use regression. NO2 spatial estimations were adjusted to correspond to relevant pregnancy periods (whole pregnancy and trimesters) for each woman. Outcome variables were birth weight, length, and head circumference (HC), along with being small for gestational age (SGA). The association between exposure to residential outdoor NO2 and outcomes was assessed controlling for potential confounders and examining the shape of the relationship using generalized additive models (GAM). Results For continuous anthropometric measures, GAM indicated a change in slope at NO2 concentrations of around 40 μg/m3. NO2 exposure >40 μg/m3 during the first trimester was associated with a change in birth length of -0.27 cm (95% CI: -0.51 to -0.03) and with a change in birth weight of -40.3 grams (-96.3 to 15.6); the same exposure throughout the whole pregnancy was associated with a change in birth HC of -0.17 cm (-0.34 to -0.003). The shape of the relation was seen to be roughly linear for the risk of being SGA. A 10 μg/m3 increase in NO2 during the second trimester was associated with being SGA-weight, odds ratio (OR): 1.37 (1.01-1.85). For SGA-length the estimate for the same comparison was OR: 1.42 (0.89-2.25). Conclusions Prenatal exposure to traffic-related air pollution may reduce fetal growth. Findings from this study provide further evidence of the need for developing strategies to reduce air pollution in order to prevent risks to fetal health and development.
Resumo:
BACKGROUND. A growing body of research suggests that prenatal exposure to air pollution may be harmful to fetal development. We assessed the association between exposure to air pollution during pregnancy and anthropometric measures at birth in four areas within the Spanish Children's Health and Environment (INMA) mother and child cohort study. METHODS. Exposure to ambient nitrogen dioxide (NO2) and benzene was estimated for the residence of each woman (n = 2,337) for each trimester and for the entire pregnancy. Outcomes included birth weight, length, and head circumference. The association between residential outdoor air pollution exposure and birth outcomes was assessed with linear regression models controlled for potential confounders. We also performed sensitivity analyses for the subset of women who spent more time at home during pregnancy. Finally, we performed a combined analysis with meta-analysis techniques. RESULTS. In the combined analysis, an increase of 10 µg/m3 in NO2 exposure during pregnancy was associated with a decrease in birth length of -0.9 mm [95% confidence interval (CI), -1.8 to -0.1 mm]. For the subset of women who spent ≥ 15 hr/day at home, the association was stronger (-0.16 mm; 95% CI, -0.27 to -0.04). For this same subset of women, a reduction of 22 g in birth weight was associated with each 10-µg/m3 increase in NO2 exposure in the second trimester (95% CI, -45.3 to 1.9). We observed no significant relationship between benzene levels and birth outcomes. CONCLUSIONS. NO2 exposure was associated with reductions in both length and weight at birth. This association was clearer for the subset of women who spent more time at home.
Resumo:
Background: There is growing evidence that traffic-related air pollution reduces birth weight. Improving exposure assessment is a key issue to advance in this research area.Objective: We investigated the effect of prenatal exposure to traffic-related air pollution via geographic information system (GIS) models on birth weight in 570 newborns from the INMA (Environment and Childhood) Sabadell cohort.Methods: We estimated pregnancy and trimester-specific exposures to nitrogen dioxide and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] by using temporally adjusted land-use regression (LUR) models. We built models for NO2 and BTEX using four and three 1-week measurement campaigns, respectively, at 57 locations. We assessed the relationship between prenatal air pollution exposure and birth weight with linear regression models. We performed sensitivity analyses considering time spent at home and time spent in nonresidential outdoor environments during pregnancy.Results: In the overall cohort, neither NO2 nor BTEX exposure was significantly associated with birth weight in any of the exposure periods. When considering only women who spent < 2 hr/day in nonresidential outdoor environments, the estimated reductions in birth weight associated with an interquartile range increase in BTEX exposure levels were 77 g [95% confidence interval (CI), 7–146 g] and 102 g (95% CI, 28–176 g) for exposures during the whole pregnancy and the second trimester, respectively. The effects of NO2 exposure were less clear in this subset.Conclusions: The association of BTEX with reduced birth weight underscores the negative role of vehicle exhaust pollutants in reproductive health. Time–activity patterns during pregnancy complement GIS-based models in exposure assessment.
Resumo:
Background: Few studies have used longitudinal ultrasound measurements to assess the effect of traffic-related air pollution on fetal growth.Objective: We examined the relationship between exposure to nitrogen dioxide (NO2) and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] on fetal growth assessed by 1,692 ultrasound measurements among 562 pregnant women from the Sabadell cohort of the Spanish INMA (Environment and Childhood) study.Methods: We used temporally adjusted land-use regression models to estimate exposures to NO2 and BTEX. We fitted mixed-effects models to estimate longitudinal growth curves for femur length (FL), head circumference (HC), abdominal circumference (AC), biparietal diameter (BPD), and estimated fetal weight (EFW). Unconditional and conditional SD scores were calculated at 12, 20, and 32 weeks of gestation. Sensitivity analyses were performed considering time–activity patterns during pregnancy.Results: Exposure to BTEX from early pregnancy was negatively associated with growth in BPD during weeks 20–32. None of the other fetal growth parameters were associated with exposure to air pollution during pregnancy. When considering only women who spent 2 hr/day in nonresidential outdoor locations, effect estimates were stronger and statistically significant for the association between NO2 and growth in HC during weeks 12–20 and growth in AC, BPD, and EFW during weeks 20–32.Conclusions: Our results lend some support to an effect of exposure to traffic-related air pollutants from early pregnancy on fetal growth during mid-pregnancy.
Resumo:
A majority of smokers and non-smokers mind tobacco smoke. Passive smoking causes death by sudden infant death, lung cancer and coronary heart disease. 3000 to 6000 persons are killed every year in France. The lack of implementation of the Evin's law published in 1991 explains why non-smokers are not given the protection they can expect. The trend of scientific knowledge and of French and international public opinions support a growing demand for a complete protection of non-smokers with a total ban of smoking in all public or working places.