159 resultados para AHS
Resumo:
To investigate the use of centre of gravity location on reducing cyclic pitch control for helicopter UAV's (unmanned air vehicles) and MAV's (micro air vehicles). Low cyclic pitch is a necessity to implement the swashplateless rotor concept using trailing edge flaps or active twist using current generation low authority piezoceramic actuators. Design/methodology/approach – An aeroelastic analysis of the helicopter rotor with elastic blades is used to perform parametric and sensitivity studies of the effects of longitudinal and lateral center of gravity (cg) movements on the main rotor cyclic pitch. An optimization approach is then used to find cg locations which reduce the cyclic pitch at a given forward speed. Findings – It is found that the longitudinal cyclic pitch and lateral cyclic pitch can be driven to zero at a given forward speed by shifting the cg forward and to the port side, respectively. There also exist pairs of numbers for the longitudinal and lateral cg locations which drive both the cyclic pitch components to zero at a given forward speed. Based on these results, a compromise optimal cg location is obtained such that the cyclic pitch is bounded within ±5° for a BO105 helicopter rotor. Originality/value – The reduction in the cyclic pitch due to helicopter cg location is found to significantly reduce the maximum magnitudes of the control angles in flight, facilitating the swashplateless rotor concept. In addition, the existence of cg locations which drive the cyclic pitches to zero allows for the use of active cg movement as a way to replace the cyclic pitch control for helicopter MAV's.
Nonlinear dynamic analysis of dragonfly inspired piezoelectrically driven flapping and pitching wing
Resumo:
The nonlinear equations for coupled elastic flapping-twisting motion of a dragonfly in- spired smart flapping wing are used for a flapping wing actuated from the root by a PZT unimorph in the piezofan configuration. Excitation by the piezoelectric harmonic force generates only the flap bending motion, which in turn, induces the elastic twist motion due to interaction between flexural and torsional vibrations modes. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Numerical simulations are performed using a wing whose size is the same as the dragonfly Sympetrum Frequens wing. It is found that the value of average lift reaches to its maximum when the smart flapping wing is excited at a frequency closer to the natural frequency in torsion. Moreover, consideration of the elastic twisting of flapping wing leads to an increase in the lift force. It is also found that the flapping wing generates sufficient lift to support its own weight and carry a small pay- load. Therefore, the piezoelectrically actuated smart flapping wing based on the geometry of Sympetrum Frequens wing and undergoing flapping-twisting motions may be considered as a potential candidate for use in MAV applications.
Resumo:
A new delaminated composite beam element is formulated for Timoshenko as well as Euler-Bernoulli beam models. Shape functions are derived from Timoshenko functions; this provides a unified formulation for slender to moderately deep beam analyses. The element is simple and easy to implement, results are on par with those from free mode delamination models. Katz fractal dimension method is applied on the mode shapes obtained from finite element models, to detect the delamination in the beam. The effect of finite element size on fractal dimension method of delamination detection is quantified.