1000 resultados para 806.0
Resumo:
The Neogene biostratigraphy presented here is based on the study of 230 samples through 737 m of pelagic sediment in Hole 806B. Sediment accumulation is interrupted only once in the uppermost lower Miocene (Zone N6), apparently coincident with a widespread deep-sea hiatus. Preservation of planktonic foraminifers through the section ranges from good to moderately poor. One hundred and ten species of planktonic foraminifers were identified; taxonomic notes on most species are included. All of the standard low-latitude Neogene foraminiferal zones are delineated, with the exceptions of Zones N8 and N9 because of a high first occurrence of Orbulina, and Zones N18 and N19 because of a high first occurrence of Sphaeroidinella dehiscens. Good agreement exists between the published account of the variation in planktonic foraminiferal species richness and the rates of diversification and turnover, and measurements of these evolutionary indexes in the record of Hole 806B. The global pattern of change in tropical/transitional species richness is paralleled in Hole 806B, with departures caused by either ecological conditions peculiar to the western equatorial Pacific or by inexactness in the estimation of million-year intervals in Hole 806B. Temporal changes in the relative abundance of taxa in the sediment assemblages, considered in light of their depth habitats, reveal a detailed picture of historical change in the structure of the upper water column over the Ontong Java Plateau. The dominance of surface dwellers (Paragloborotalia kugleri, P. mayeri, Dentoglobigerina altispira, Globigerinita glutinata, and Globigerinoides spp.) throughout the lower and middle Miocene is replaced by a more equitable distribution of surface (D. altispira and Globigerinoides spp.), intermediate (Globorotalia menardii plexus), and deep (Streptochilus spp.) dwellers in the late Miocene, following the closing of the Indo-Pacific Seaway and the initiation of large-scale glaciation in the Antarctic. The shoaling of the thermocline along the equator engendered by these climatic and tectonic events persisted through the Pliocene, when initial increases in the abundance of a new set of shallow, intermediate, and deep dwelling species of planktonic foraminifers coincide with the closing of the Panamanian Seaway.
Resumo:
Planktonic foraminiferal oxygen isotope records from the western and eastern tropical Pacific and Atlantic Oceans suggest a southward shift in the Intertropical Convergence Zone toward its modern location between 4.4 and 4.3 Ma. A concomitant shift in the carbon isotope compositions of Atlantic benthic foraminifera provides strong evidence for an increased thermohaline overturn at this time. We suggest that the southward shift of the Intertropical Convergence Zone and associated change in trade-wind circulation altered equatorial surface hydrography, increased the advection of warmer and more saline surface waters into the subtropical and North Atlantic, and contributed to thermohaline overturn.
Resumo:
An improved procedure for lithium isotope analysis using Li3PO4 as the ion source has been investigated for application to geological samples. The 7Li/6Li ratio is measured using double rhenium filament thermal ionization mass spectrometry in which isotopic fractionation is minimized at high temperatures. The method produces a stable, high intensity Li+ ion beam that allows measurement of nanogram quantities of lithium. This results in a reduction in sample size of up to 1000 times relative to that required for the established Li2BO2+ method while maintaining a comparable precision of better than 1? (1 sigma). Replicate analyses of the NBS L-SVEC Li2CO3 standard yielded a mean value of 12.1047+/-0.0043 (n=21), which is close to the reported absolute value of 12.02+/-0.03. Intercalibration with a wide range of geological samples shows excellent agreement between the Li3PO4 and Li2BO2+ techniques. Replicate analyses of seawater and a fresh submarine basalt display high precision results that agree with previous measurements. Taking advantage of the high ionization efficiency of the phosphate ion source, we have made the first measurements of the lithium concentration (by isotope dilution) and isotopic composition of calcareous foraminiferal tests and other marine carbonates. Preliminary results indicate that substantial lithium exchange occurs between carbonate sediments and their interstitial waters. In addition, a possible link between lithium paleoceanography and paleoclimate during the last 1000 ky may be derived from planktonic foraminiferal tests. This highly sensitive technique can be applied in the examination of low lithium reservoirs and thereby provide insight into some fundamental aspects of lithium geochemistry.