846 resultados para 770506 Remnant vegetation and protected conservation areas
Resumo:
Sustainable forest restoration and management practices require a thorough understanding of the influence that habitat fragmentation has on the processes shaping genetic variation and its distribution in tree populations. We quantified genetic variation at isozyme markers and chloroplast DNA (cpDNA), analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in severely fragmented populations of Sorbus aucuparia (Rosaceae) in a single catchment (Moffat) in southern Scotland. Remnants maintain surprisingly high levels of gene diversity (H-E) for isozymes (H-E = 0.195) and cpDNA markers (H-E = 0.490). Estimates are very similar to those from non-fragmented populations in continental Europe, even though the latter were sampled over a much larger spatial scale. Overall, no genetic bottleneck or departures from random mating were detected in the Moffat fragments. However, genetic differentiation among remnants was detected for both types of marker (isozymes Theta(n) = 0.043, cpDNA Theta(c) = 0.131; G-test, P-value < 0.001). In this self-incompatible, insect-pollinated, bird-dispersed tree species, the estimated ratio of pollen flow to seed flow between fragments is close to 1 (r = 1.36). Reduced pollen-mediated gene flow is a likely consequence of habitat fragmentation, but effective seed dispersal by birds is probably helping to maintain high levels of genetic diversity within remnants and reduce genetic differentiation between them.
Resumo:
Glaphyromorphus clandestinus, sp. nov., is described from granite-slab habitat on Mt Elliot, north-eastern Queensland. This species can be distinguished from its congeners by a combination of the following characters: large size (SVL 72 mm), adpressed limbs of adult separated by noticeably more than the length of the forelimb, 26 mid-body scale rows, and flanks patterned with dark flecks forming a series of longitudinal lines. The distribution, habitat preferences and habits of this species are poorly known. Currently G. clandestinus is known from a single locality where individuals have been found in an exposed area of exfoliating granite, set in a mosaic of rainforest and eucalyptus woodland. The discovery of this species brings to three the number of vertebrate species known to be endemic to Mt Elliot and highlights the evolutionary significance of this southerly outlier to the mountainous rainforest of the Wet Tropics.
Resumo:
Since no universal codominant markers are currently available, dominant genetic markers, such as amplified fragment length polymorphism (AFLP), are valuable tools for assessing genetic diversity in tropical trees. However, the measurement of genetic diversity (H) with dominant markers depends on the frequency of null homozygotes (Q) and the fixation index (F) of populations. While Q can be estimated for AFLP loci, F is less accessible. Through a modelling approach, we show that the monolocus estimation of genetic diversity is strongly dependent on the value of F, but that the multilocus diversity estimate is surprisingly robust to variations in F. The robustness of the estimate is due to a mechanistic effect of compensation between negative and positive biases of H by different AFLP loci exhibiting contrasting frequency profiles of Q. The robustness was tested across contrasting theoretical frequency profiles of Q and verified for 10 neotropical species. Practical recommendations for the implementation of this analytical method are given for genetic surveys in tropical trees, where such markers are widely applied.
Resumo:
Fine-scale spatial genetic structure (SGS) in natural tree populations is largely a result of restricted pollen and seed dispersal. Understanding the link between limitations to dispersal in gene vectors and SGS is of key interest to biologists and the availability of highly variable molecular markers has facilitated fine-scale analysis of populations. However, estimation of SGS may depend strongly on the type of genetic marker and sampling strategy (of both loci and individuals). To explore sampling limits, we created a model population with simulated distributions of dominant and codominant alleles, resulting from natural regeneration with restricted gene flow. SGS estimates from subsamples (simulating collection and analysis with amplified fragment length polymorphism (AFLP) and microsatellite markers) were correlated with the 'real' estimate (from the full model population). For both marker types, sampling ranges were evident, with lower limits below which estimation was poorly correlated and upper limits above which sampling became inefficient. Lower limits (correlation of 0.9) were 100 individuals, 10 loci for microsatellites and 150 individuals, 100 loci for AFLPs. Upper limits were 200 individuals, five loci for microsatellites and 200 individuals, 100 loci for AFLPs. The limits indicated by simulation were compared with data sets from real species. Instances where sampling effort had been either insufficient or inefficient were identified. The model results should form practical boundaries for studies aiming to detect SGS. However, greater sample sizes will be required in cases where SGS is weaker than for our simulated population, for example, in species with effective pollen/seed dispersal mechanisms.
Resumo:
The number of studies of tropical tree species that use molecular tools is increasing, most of which collect leaf tissue for genomic DNA extraction. In tropical trees the canopy is not only frequently inaccessible, but also, once reached, the leaf tissue is often heavily defended against herbivory by high concentrations of anti-predation compounds, which may inhibit downstream applications, particularly PCR. Cambium tissue, accessed directly from the tree trunk at ground level, offers a readily accessible resource that is less hampered by the presence of defensive chemicals than leaf tissue. Here we describe a simple method for obtaining tissue from the cambial zone for DNA extraction and test the applicability of the method in a range of tropical tree species. The method was used successfully to extract DNA from 11 species in nine families. A subset of the DNA extracts was tested in more detail and proved to be highly suitable for AFLP analysis.
Resumo:
Increasingly, large areas of native tropical forests are being transformed into a mosaic of human dominated land uses with scattered mature remnants and secondary forests. In general, at the end of the land clearing process, the landscape will have two forest components: a stable component of surviving mature forests, and a dynamic component of secondary forests of different ages. As the proportion of mature forests continues to decline, secondary forests play an increasing role in the conservation and restoration of biodiversity. This paper aims to predict and explain spatial and temporal patterns in the age of remnant mature and secondary forests in lowland Colombian landscapes. We analyse the age distributions of forest fragments, using detailed temporal land cover data derived from aerial photographs. Ordinal logistic regression analysis was applied to model the spatial dynamics of mature and secondary forest patches. In particular, the effect of soil fertility, accessibility and auto-correlated neighbourhood terms on forest age and time of isolation of remnant patches was assessed. In heavily transformed landscapes, forests account for approximately 8% of the total landscape area, of which three quarters are comprised of secondary forests. Secondary forest growth adjacent to mature forest patches increases mean patch size and core area, and therefore plays an important ecological role in maintaining landscape structure. The regression models show that forest age is positively associated with the amount of neighbouring forest, and negatively associated with the amount of neighbouring secondary vegetation, so the older the forest is the less secondary vegetation there is adjacent to it. Accessibility and soil fertility also have a negative but variable influence on the age of forest remnants. The probability of future clearing if current conditions hold is higher for regenerated than mature forests. The challenge of biodiversity conservation and restoration in dynamic and spatially heterogeneous landscape mosaics composed of mature and secondary forests is discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The main purpose of this article is to gain an insight into the relationships between variables describing the environmental conditions of the Far Northern section of the Great Barrier Reef, Australia, Several of the variables describing these conditions had different measurement levels and often they had non-linear relationships. Using non-linear principal component analysis, it was possible to acquire an insight into these relationships. Furthermore. three geographical areas with unique environmental characteristics could be identified. Copyright (c) 2005 John Wiley & Sons, Ltd.