639 resultados para 7050-T7451 aluminium alloy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatigue crack growth properties of friction stir welded joints of 2024-T3 aluminium alloy have been studied under constant load amplitude (increasing-Delta K), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka`s method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold Delta K values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to K-C instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non-conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non-conservative crack growth rate predictions next to K-C instability. At threshold Delta K values non-conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few years great efforts have been made in order to find and to develop environmentally friendly substitutes for Cr6+ pre-treatments applied on aluminium alloys used in the aircraft industry. Among the potential substitutes, silane layers have attracted considerable interest from researchers and from the industry. The present work investigates the anti-corrosion behaviour of (bis-1, 2-(triethoxysilyl) ethane (BTSE)) silane layers modified with Ce ions and/or silica nanoparticles applied on Al alloy 2024-T3 substrates. The corrosion behaviour was investigated in 0.1 M NaCl solution via d.c. polarization and electrochemical impedance spectroscopy (EIS). Contact angle measurements and XPS were used to assess information on the chemistry of the silane pre-treated surfaces. The results have shown that the introduction of additives improves the corrosion protection properties of the silane layer. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A magnesium-aluminium alloy of eutectic composition was solidified under two different cooling conditions, producing a low and a high growth rate of the eutectic solid-liquid interface. The high growth rate specimen contained smaller eutectic grains and cells, with a smaller interphase spacing compared with the low growth rate specimen. The high growth rate specimen also contained some primary Mg17Al12 dendrites, suggesting that the coupled zone is skewed towards the Mg phase with increased undercooling, A lamellar eutectic morphology was observed in the low growth rate specimen, while the morphology was fibrous in the high growth rate specimen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, an experimental investigation into the shear strength behaviour of aluminium alloy single-lap adhesive joints was carried out in order to understand the effect of temperature on the strength of adhesively bonding joints. Single lap joints (SLJs) were fabricated and tested at RT and high temperatures (100ºC, 125ºC, 150ºC, 175ºC and 200ºC). Results showed that the failure loads of the single-lap joint test specimens vary with temperature and this needs to be considered in any design procedure. It is shown that, although the tensile stress decreased with temperature, the lap-shear strength of the adhesive increased with increasing of temperature up to the glass transition of the adhesive (Tg) and decreased for tests above the Tg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High reflectivity to laser light, alloying element evaporation during high power laser welding makes aluminium alloys highly susceptibility to weld defects such as porosity, cracking and undercutting. The dynamic behaviour of the keyhole, due to fluctuating plasma above the keyhole and the vaporization ofthe alloying elements with in the keyhole, is the key problem to be solved for the improvement of the weld quality and stabilization of the keyhole dynamics isperhaps the single most important development that can broaden the application of laser welding of aluminium alloys. In laser welding, the shielding gas is commonly used to stabilize the welding process, to improve the welded joint features and to protect the welded seam from oxidation. The chemicalcomposition of the shielding gas is a key factor in achieving the final qualityof the welded joints. Wide range of shielding gases varying from the pure gasesto complex mixtures based on helium, argon, nitrogen and carbon dioxide are commercially available. These gas mixtures should be considered in terms of their suitability during laser welding of aluminium alloys to produce quality welds. The main objective of the present work is to study the effect of the shielding gascomposition during laser welding of aluminium alloys. Aluminium alloy A15754 was welded using 3kW Nd-YAG laser (continuous wave mode). The alloy samples were butt welded with different shielding gases (pure and mixture of gases) so that high quality welds with high joint efficiencies could be produced. It was observed that the chemical composition of the gases influenced the final weld quality and properties. In general, the mixture gases, in correct proportions, enabled better utilisation of the properties of the mixing gases, stabilized the welding process and produced better weld quality compared to the pure shielding gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of high-strength aluminium alloys as material for injection molding tools to produce small and medium batches of plastic products as well as prototyping molds is becoming of increasing demand by the tooling industry. These alloys are replacing the traditional use of steel in the cases above because they offer many advantages such as very high thermal conductivity associated with good corrosion and wear resistance presenting good machinability in milling and electrical discharge machining operations. Unfortunately there is little technological knowledge on the Electrical Discharge Machining (EDM) of high-strength aluminium alloys, especially about the AMP 8000 alloy. The duty factor, which means the ratio between pulse duration and pulse cycle time exerts an important role on the performance of EDM. This work has carried out an experimental study on the variation of the duty factor in order to analyze its influence on material removal rate and volumetric relative wear under roughing conditions of EDM process. The results showed that high values of duty factor are possible to be applied without bringing instability into the EDM process and with improvement of material removal rate and volumetric relative wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for reduced intrinsic weight of structures and vehicles in the transportation industry has made aluminium research of interest. Aluminium has properties that are favourable for structural engineering, including good strength-to-weight ratio, corrosion resistance and machinability. It can be easily recycled saving energy used in smelting as compared to steel. Its alloys can have ultimate tensile strength of up to 750 MPa, which is comparable to steel. Aluminium alloys are generally weldable, however welding of high strength alloys like the 7xxx series pose considerable challenges. This paper presents research on the weldability of high strength aluminium alloys, principally the 7xxx series. The weldability with various weld processes including MIG, TIG, and FSW, is discussed in addition to consideration of joint types, weld defects and recommendations for minimizing or preventing weld defects. Experimental research was carried out on 7025-T6 and AW-7020 alloys. Samples were welded, and weld cross sections utilized in weld metallurgy studies. Mechanical tests were carried out including hardness tests and tensile tests. In addition, testing was done for the presence of Al2O3 on exposed aluminium alloy. It was observed that at constant weld heat input using a pulsed MIG system, the welding speed had little or no effect on the weld hardness. However, the grain size increased as the filler wire feed rate, welding current and welding speed increased. High heat input resulted in lower hardness of the weld profile. Weld preheating was detrimental to AW- 7020 welds; however, artificial aging was beneficial. Acceptable welds were attained with pulsed MIG without the removal of the Al2O3 layer prior to welding. The Al2O3 oxide layer was found to have different compositions in different aluminium alloys. These findings contribute useful additional information to the knowledge base of aluminium welding. The application of the findings of this study in welding will help reduce weld cost and improve high strength aluminium structure productivity by removing the need for pre-weld cleaning. Better understanding of aluminium weld metallurgy equips weld engineers with information for better aluminium weld design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 2024-T3 and 7050-T7 aluminium alloys electrochemical behavior has been studied in NaCl 5% neutral solutions and 0,1M concentration containing NO 3 - or NO 2 -. The current job supports corrosion research on aluminium alloys used in aeronautic industry. Open circuit potential, polarisation curves and electrochemical impedance spectroscopy techniques have been used. In chloride solutions, alloys corrosion takes place through a pitting mechanism. Added anions to aerated solutions do not possess inhibition effect. In deaerated solutions, nitrite has diminished anodic dissolution rate, probably by incorporating this anion in the oxide and/or hydroxide film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technology is growing interest in the use of composites, due to the requirement of lighter materials and more resistant, factors essential to meet the project specifications and reduce the operational cost. In the production of high performance structural composites, considering the aerospace criteria, the domestic industry has shown interest in the process of resin transfer molding (RTM) for reproducibility and low cost. This process is suitable for producing components of polymeric composites with relatively simple geometries, consistent thicknesses, high quality finish with no size limitations. The objective of this work was machined carbon steel to make a matched-die tooling for RTM and produce two composite plates of epoxy resin and carbon fiber fabric with and without induced discontinuities, which were compared towards their impregnation with ultrasound, their properties via tensile tests and thermal analysis. In ultrasonic inspection, it was found good impregnation of the preform of both composites. In the thermal analysis it was possible to check the degradation temperature of the composites, the glass transition temperature and it was found that the composites showed no effective cure cycles, but presented good performance in the tensile test when compared with aluminum alloy 7050 T7451 . The results showed that the injection strategy was appropriate since the laminate exhibited a good quality for the proposed application

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective laser sintering has been used to fabricate an aluminium alloy powder preform which is subsequently debound and infiltrated with a second aluminium alloy. This represents a new rapid manufacturing system for aluminium that can be used to fabricate large, intricate parts. The base powder is an alloy such as AA6061. The infiltrant is a binary or higher-order eutectic based on either Al-Cu or At-Si. To ensure that infiltration occurs without loss of dimensional precision, it is important that a rigid skeleton forms prior to infiltration. This can be achieved by the partial transformation of the aluminium to aluminium nitride. In order for this to occur throughout the component, magnesium powder must be added to the alumina support powder which surrounds the part in the furnace. The magnesium scavenges the oxygen and thereby creates a microclimate in which aluminium nitride can form. The replacement of the ionocovalent Al2O3 with the covalent AlN on the surface of the aluminium powders also facilitates wetting and thus spontaneous and complete infiltration. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.