962 resultados para 680302 Cement and concrete materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

At head of title: Civil Engineering Testing Laboratories, Columbia University ...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metakaolin (MK), a calcined clay, was included as a partial cement replacement material, at up to 20% by weight of binder, in cement pastes and concrete, and its influence on the resistance to chloride ingress investigated. Reductions in effective chloride diffusion coefficients through hardened cement paste were obtained for binary blends and by combining OPC, MK and a second cement replacement material of pulverised fuel ash or ground granulated blast furnace slag. Steady state oxygen diffusion measurements through hardened cement pastes measured using an electrochemical cell showed that the interaction between charged species and the pore surfaces is a major factor in determining chloride diffusion rate. Rheology of the binder, particularly at high MK replacement levels, was found to have a dramatic influence on the diffusion performance of cement pastes. It was concluded that plasticising admixtures are essential for adequate dispersion of MK in cement pastes. Chloride concentration profile analysis of the concrete cylinders, exposed to sodium chloride solution for one year, was employed to obtain apparent chloride diffusion coefficients for concrete specimens. MK was found to reduce the depth of chloride penetration into concrete when compared with that of unblended mixes. Corrosion rate and corrosion potential measurements were taken on steel bars embedded in concrete exposed to a saline environment under conditions of cyclic wetting and drying. The initiation time for corrosion was found to be significantly longer for MK blended mixes than for plain OPC systems. The aggregate-paste interfacial zone of MK blended systems was investigated by steady state diffusion of chloride ions through mortar containing glass beads as model aggregate. For the model aggregate specimens tested the work confirmed the hypothesis that properties of the bulk paste are the controlling factors in ionic diffusion through mortar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In establishing the reliability of performance-related design methods for concrete – which are relevant for resistance against chloride-induced corrosion - long-term experience of local materials and practices and detailed knowledge of the ambient and local micro-climate are critical. Furthermore, in the development of analytical models for performance-based design, calibration against test data representative of actual conditions in practice is required. To this end, the current study presents results from full-scale, concrete pier-stems under long-term exposure to a marine environment with work focussing on XS2 (below mid-tide level) in which the concrete is regarded as fully saturated and XS3 (tidal, splash and spray) in which the concrete is in an unsaturated condition. These exposures represent zones where concrete structures are most susceptible to ionic ingress and deterioration. Chloride profiles and chloride transport behaviour are studied using both an empirical model (erfc function) and a physical model (ClinConc). The time dependency of surface chloride concentration (Cs) and apparent diffusivity (Da) were established for the empirical model whereas, in the ClinConc model (originally based on saturated concrete), two new environmental factors were introduced for the XS3 environmental exposure zone. Although the XS3 is considered as one environmental exposure zone according to BS EN 206-1:2013, the work has highlighted that even within this zone, significant changes in chloride ingress are evident. This study aims to update the parameters of both models for predicting the long term transport behaviour of concrete subjected to environmental exposure classes XS2 and XS3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decade advanced composite materials, like carbon fibre reinforced polymer (CFRP), have increasingly been used in civil engineering infrastructure. The benefits of advanced composites are rapidly becoming evident. This paper focuses on the comparative performance of steel and concrete members retrofitted by carbon fibre reinforced polymers. The objective of this work is a systematic assessment and evaluation of the performance of CFRP for both the concrete and steel members available in the technical literature. Existing empirical and analytical models were studied. Comparison is made with respect to failure mode, bond characteristics, fatigue behaviour, durability, corrosion, load carrying capacity and force transfer. It is concluded that empirical expressions for the concrete-CFRP composite are not readily suited for direct use in the steel-CFRP composite. This paper identifies some of the major issues that need further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental investigation on the fracture properties of high-strength concrete (HSC) is reported. Three-point bend beam specimens of size 100 x 100 x 500 mm were used as per RILEM-FMC 50 recommendations. The influence of maximum size of coarse aggregate on fracture energy, fracture toughness, and characteristic length of concrete has been studied. The compressive strength of concrete ranged between 40 and 75 MPa. Relatively brittle fracture behavior was observed with the increase in compressive strength. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases as the size of coarse aggregate increases. The fracture energy increases as the maximum size of coarse aggregate and compressive strength of concrete increase. The characteristic length of concrete increases with the maximum size of coarse aggregate and decreases as the compressive strength increases, (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimation of creep and shrinkage are critical in order to compute loss of prestress with time in order to compute leak tightness and assess safety margins available in containment structures of nuclear power plants. Short-term creep and shrinkage experiments have been conducted using in-house test facilities developed specifically for the present research program on 35 and 45 MPa normal concrete and 25 MPa heavy density concrete. The extensive experimental program for creep, has cylinders subject to sustained levels of load typically for several days duration (till negligible strain increase with time is observed in the creep specimen), to provide the total creep strain versus time curves for the two normal density concrete grades and one heavy density concrete grade at different load levels, different ages at loading, and at different relative humidity’s. Shrinkage studies on prism specimen for concrete of the same mix grades are also being studied. In the first instance, creep and shrinkage prediction models reported in the literature has been used to predict the creep and shrinkage levels in subsequent experimental data with acceptable accuracy. While macro-scale short experiments and analytical model development to estimate time dependent deformation under sustained loads over long term, accounting for the composite rheology through the influence of parameters such as the characteristic strength, age of concrete at loading, relative humidity, temperature, mix proportion (cement: fine aggregate: coarse aggregate: water) and volume to surface ratio and the associated uncertainties in these variables form one part of the study, it is widely believed that strength, early age rheology, creep and shrinkage are affected by the material properties at the nano-scale that are not well established. In order to understand and improve cement and concrete properties, investigation of the nanostructure of the composite and how it relates to the local mechanical properties is being undertaken. While results of creep and shrinkage obtained at macro-scale and their predictions through rheological modeling are satisfactory, the nano and micro indenting experimental and analytical studies are presently underway. Computational mechanics based models for creep and shrinkage in concrete must necessarily account for numerous parameters that impact their short and long term response. A Kelvin type model with several elements representing the influence of various factors that impact the behaviour is under development. The immediate short term deformation (elastic response), effects of relative humidity and temperature, volume to surface ratio, water cement ratio and aggregate cement ratio, load levels and age of concrete at loading are parameters accounted for in this model. Inputs to this model, such as the pore structure and mechanical properties at micro/nano scale have been taken from scanning electron microscopy and micro/nano-indenting of the sample specimen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion of steel reinforcement bars in reinforced concrete structures exposed to severe marine environments usually is attributed to the aggressive nature of chloride ions. In some cases in practice corrosion has been observed to commence already within a few years of exposure even with considerable concrete cover to the reinforcement and apparently high quality concretes. However, there are a number of other cases in practice for which corrosion initiation took much longer, even in cases with quite modest concrete cover and modest concrete quality. Many of these structures show satisfactory long-term structural performance, despite having high levels of localized chloride concentrations at the reinforcement. This disparity was noted already more than 50 years ago, but appears still not fully explained. This paper presents a systematic overview of cases reported in the engineering and corrosion literature and considers possible reasons for these differences. Consistent with observations by others, the data show that concretes made from blast furnace cements have better corrosion durability properties. The data also strongly suggest that concretes made with limestone or non-reactive dolomite aggregates or sufficiently high levels of other forms of calcium carbonates have favourable reinforcement corrosion properties. Both corrosion initiation and the onset of significant damage are delayed. Some possible reasons for this are explored briefly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an invited contribution in a special issue of the Journal of Cement and Concrete Composites

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various industrial by-products, such as fly ash, ground granulated blast-furnace slag and silica fume, have been used in concrete to improve its properties. This also enables any environmental issues associated with their disposal. Another material that is available in large quantities and requiring alternative methods of disposal is the Bauxite Refinery Reside (BRR) from the Bayer process used to extract alumina from bauxite. As this is highly caustic and causes many health hazards, Virotec International Ltd. developed a patented technology to convert this into a material that can be used commercially, known as Bauxsol™, for various environmental remediation applications. This use is limited to small quantities of seawater-neutralised BRR and hence an investigation was carried out to establish its potential utilisation as a sand replacement material in concrete. In addition to fresh properties of concrete containing seawater-neutralised BRR up to 20% by mass of Portland cement, mechanical and durability properties were determined. These properties indicated that seawater-neutralised BRR can be used to replace natural sand up to 10% by mass of cement to improve the durability properties of concrete without detrimentally affecting their physical properties. Combining these beneficial effects with environmental remediation applications, it can be concluded that there are specific applications where concretes containing seawater-neutralised BRR could be used.