989 resultados para 670707 Inorganic industrial chemicals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high volume and widespread use of industrial chemicals, the backlog of internationally untested chemicals, the uptake of synthetic chemicals found in babies’ in utero, cord blood, and in breast milk, and the lack of a unified and comprehensive regulatory framework, all underscore the importance of developing policies that protect the most vulnerable in our society – our children. Australia’s failure to do so raises profound intergenerational ethical issues. This paper tells a story of international policy, and where Australia is falling down. This paper highlights the need for significant policy reforms in the area of chemical regulation in Australia. We argue that we can learn much from countries already taking critical steps to reduce the toxic chemical exposure, and the development of a comprehensive, child-centered chemical regulation framework is central to turning this around.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant uptake of organic chemicals is an important process when considering the risks associated with land contamination, the role of vegetation in the global cycling of persistent organic pollutants, and the potential for industrial discharges to contaminate the food chain. There have been some significant advances in our understanding of the processes of plant uptake of organic chemicals in recent years; most notably there is now a better understanding of the air to plant transfer pathway, which may be significant for a number of industrial chemicals. This review identifies the key processes involved in the plant uptake of organic chemicals including those for which there is currently little information, e.g., plant lipid content and plant metabolism. One of the principal findings is that although a number of predictive models exist using established relationships, these require further validation if they are to be considered sufficiently robust for the purposes of contaminated land risk assessment or for prediction of the global cycling of persistent organic pollutants. Finally, a number of processes are identified which should be the focus of future research

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucocorticoids play an essential role in the regulation of key physiological processes, including immunomodulation, brain function, energy metabolism, electrolyte balance and blood pressure. Exposure to naturally occurring compounds or industrial chemicals that impair glucocorticoid action may contribute to the increasing incidence of cognitive deficits, immune disorders and metabolic diseases. Potentially, "glucocorticoid disruptors" can interfere with various steps of hormone action, e.g. hormone synthesis, binding to plasma proteins, delivery to target cells, pre-receptor regulation of the ratio of active versus inactive hormones, glucocorticoid receptor (GR) function, or export and degradation of glucocorticoids. Several recent studies indicate that such chemicals exist and that some of them can cause multiple toxic effects by interfering with different steps of hormone action. For example, increasing evidence suggests that organotins disturb glucocorticoid action by altering the function of factors that regulate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) pre-receptor enzymes, by direct inhibition of 11beta-HSD2-dependent inactivation of glucocorticoids, and by blocking GR activation. These observations emphasize on the complexity of the toxic effects caused by such compounds and on the need of suitable test systems to assess their effects on each relevant step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shell structures find use in many fields of engineering, notably structural, mechanical, aerospace and nuclear-reactor disciplines. Axisymmetric shell structures are used as dome type of roofs, hyperbolic cooling towers, silos for storage of grain, oil and industrial chemicals and water tanks. Despite their thin walls, strength is derived due to the curvature. The generally high strength-to-weight ratio of the shell form, combined with its inherent stiffness, has formed the basis of this vast application. With the advent in computation technology, the finite element method and optimisation techniques, structural engineers have extremely versatile tools for the optimum design of such structures. Optimisation of shell structures can result not only in improved designs, but also in a large saving of material. The finite element method being a general numerical procedure that could be used to treat any shell problem to any desired degree of accuracy, requires several runs in order to obtain a complete picture of the effect of one parameter on the shell structure. This redesign I re-analysis cycle has been achieved via structural optimisation in the present research, and MSC/NASTRAN (a commercially available finite element code) has been used in this context for volume optimisation of axisymmetric shell structures under axisymmetric and non-axisymmetric loading conditions. The parametric study of different axisymmetric shell structures has revealed that the hyperbolic shape is the most economical solution of shells of revolution. To establish this, axisymmetric loading; self-weight and hydrostatic pressure, and non-axisymmetric loading; wind pressure and earthquake dynamic forces have been modelled on graphical pre and post processor (PATRAN) and analysis has been performed on two finite element codes (ABAQUS and NASTRAN), numerical model verification studies are performed, and optimum material volume required in the walls of cylindrical, conical, parabolic and hyperbolic forms of axisymmetric shell structures are evaluated and reviewed. Free vibration and transient earthquake analysis of hyperbolic shells have been performed once it was established that hyperbolic shape is the most economical under all possible loading conditions. Effect of important parameters of hyperbolic shell structures; shell wall thickness, height and curvature, have been evaluated and empirical relationships have been developed to estimate an approximate value of the lowest (first) natural frequency of vibration. The outcome of this thesis has been the generation of new research information on performance characteristics of axisymmetric shell structures that will facilitate improved designs of shells with better choice of shapes and enhanced levels of economy and performance. Key words; Axisymmetric shell structures, Finite element analysis, Volume Optimisation_ Free vibration_ Transient response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transferase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes, GSTT1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GSTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals, e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestive tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report presents the findings of the first phase of an investigation into the cause(s) of taints in salmonid fish in the River Ribble, commissioned by the North West Region of the Environment Agency. There have been reports of tainting in fish taken from both the estuary and the freshwater river for many years, but the contaminants involved and their source and transport pathway are unknown. Tainting by phenols has been of specific concern in the past. The work programme comprised: examination of tainting reports; collection of salmonids; their submission for taste testing; literature review; analysis of fish flesh using gas chromatography-mass spectrometry (GCMS) and analysis of river bed sediments. From enquiries, three common descriptors of the 'taint' were identified: disinfectanty; diesely; and muddy. The incidence of taints appears transient/irregular and may therefore relate to the incidence of discharges and specific threshold concentrations of pollutants. The literature review showed that a wide range of organic compounds including many industrial chemicals, and others which are naturally occurring, can taint fish flesh. Taste testing confirmed the presence of tainted salmon and trout in the Ribbie Catchment. It identified a low incidence of 'untainted' fish but demonstrated the 'taint' to be not specific to one tainting substance. Differences were found both between the species and fish from different parts of the catchment. Overall, most fish exhibited an unpleasant flavour, though this may have been influenced to some extent by the fact that most were sexually mature. The worst tainting was found in trout from the river Calder: a soapy/chemical aftertaste. An unpleasant earthy/musty flavour distinguished the salmon from the trout. Phenol was shown to have been a minor issue during the present study, whilst no hydrocarbon taints were identified. Examination of tissue from the eight salmon exhibiting the worst taints revealed the presence of aromatic hydrocarbons, but no phenolic compounds. Other notable substances present in the fish were siioxanes and benzophenone. Data from sediment analysis is presented which shows the main compounds present to be aromatic and polyaromatic hydrocarbons, that concentrations at two locations R. Darwen and R. Calder were significantly higher than at other sites, and that some phenolic compounds were detected at low levels. A paucity of fish flesh taste descriptors linked to specific compounds prevented an obvious correlation to be made between the tastes observed and the organic compounds detected. Descriptors frequently used by the taste testing panel (e.g. earthy, musty, astringency, chemical) cannot be linked to any of the compounds identified in the tissue analyses. No taste information was available from the literature on siioxanes. Aromatic hydrocarbons though present in tissue and sediments were not identified as tainting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because fish bioaccumulate* certain chemicals, levels of chemical contaminants in their edible portion must be closely monitored. In recent years, FDA has conducted several surveys designed to determine the occurrence and levels of selected chemicals or groups of chemicals in fish. Previous fish surveillance programs included the Mercury in Wholesale Fish Survey (FY 71), the FY 73 and 74 Comprehensive Fish Surveys, the Canned Tuna Program (FY 75), the Kepone and Mirex Contamination Program (FY 77), and the FY 77 Mercury in Swordfish Program. In addition, recent Compliance Programs for Pesticides and Metals in Foods and Pesticides, Metals, and Industrial Chemicals in Animal Feed have specified coverage of fish and fish products. Because of previous findings and the sustained high level of fish imported into the United States, a separate compliance program dealing solely with chemical contaminants in fish was initiated by the FDA Bureau of Foods in FY 78. The program includes all domestic and imported fish coverage except that directed by the Bureau of Veterinary Medicine for animal feed components derived from fishery products. The earlier surveys indicated that "bottom feeder" species such as catfish generally had the highest levels of pesticides and polychlorinated biphenyls (PCBs). For this reason, coverage at these species has been emphasized. Similarly, tuna has received special attention because it is the most prevalent fish in the U.S. diet and because of potential problems with mercury. Halibut, swordfish, and snapper also were emphasized in the sampling because of potential problems with mercury levels determined in previous years. The findings in this program were used in detecting emerging problems in fish and directing FDA efforts to deal with them. Care must be exercised in drawing conclusions about trends from the data because this Compliance Program was not statistically designed. Sampling objectives and sources may vary from year to year; thus the results are not directly comparable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytological and biochemical alterations of crucial carp (Carassius auratus) hepatocytes were characterized after exposure to sediments from a lake contaminated with dioxins and other industrial chemicals. Carp were exposed in 20 L water containing 25, 50, or 100 g of contaminated sediment for 2 and 4 weeks. Ultrastructural changes in the liver were characterized by severe enlargement of hepatocytes. Alterations in the cell. included formation of condensed and irregular cell nucleus, polynuclei, dispersed heterochromatin, enlargement of the nucleolus, and degeneration of the nucleus. Mitochondrial numbers were reduced and cristae were deformed. Myelin figures and lysosomes were increased, and sometimes cell organelles and cell matrix were totally lost after 4 weeks of exposure. The ultrastructural alterations were correlated with exposure time and sediment concentrations. Hepatosometic index was significantly increased in experimental groups at 2 and 4 weeks as compared with the control group. EROD enzyme activities were strongly induced in liver. A trend from rough endoplasmic reticulum (RER) to SER was observed. Our results suggest that the dioxin-like compounds bound by sediment were bioavailable to C. auratus and cause sublethal effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitous noxious hydrophobic substances, such as hydrocarbons, pesticides and diverse industrial chemicals, stress biological systems and thereby affect their ability to mediate biosphere functions like element and energy cycling vital to biosphere health. Such chemically diverse compounds may have distinct toxic activities for cellular systems; they may also share a common mechanism of stress induction mediated by their hydrophobicity. We hypothesized that the stressful effects of, and cellular adaptations to, hydrophobic stressors operate at the level of water : macromolecule interactions. Here, we present evidence that: (i) hydrocarbons reduce structural interactions within and between cellular macromolecules, (ii) organic compatible solutes-metabolites that protect against osmotic and chaotrope-induced stresses-ameliorate this effect, (iii) toxic hydrophobic substances induce a potent form of water stress in macromolecular and cellular systems, and (iv) the stress mechanism of, and cellular responses to, hydrophobic substances are remarkably similar to those associated with chaotrope-induced water stress. These findings suggest that it may be possible to devise new interventions for microbial processes in both natural environments and industrial reactors to expand microbial tolerance of hydrophobic substances, and hence the biotic windows for such processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial chemicals, antimicrobials, drugs and personal care products have been reported as global pollutants which enter the food chain. Some of them have also been classified as endocrine disruptors based on results of various studies employing a number of in vitro/. vivo tests. The present study employed a mammalian reporter gene assay to assess the effects of known and emerging contaminants on estrogen nuclear receptor transactivation.Out of fifty-nine compounds assessed, estrogen receptor agonistic activity was observed for parabens (. n= 3), UV filters (. n= 6), phthalates (. n= 4) and a metabolite, pyrethroids (. n= 9) and their metabolites (. n= 3). Two compounds were estrogen receptor antagonists while some of the agonists enhanced 17β-estradiol mediated response.This study reports five new compounds (pyrethroids and their metabolites) possessing estrogen agonist activity and highlights for the first time that pyrethroid metabolites are of particular concern showing much greater estrogenic activity than their parent compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalysis research underpins the science of modern chemical processing and fuel technologies. Catalysis is commercially one of the most important technologies in national economies. Solid state heterogeneous catalyst materials such as metal oxides and metal particles on ceramic oxide substrates are most common. They are typically used with commodity gases and liquid reactants. Selective oxidation catalysts of hydrocarbon feedstocks is the dominant process of converting them to key industrial chemicals, polymers and energy sources.[1] In the absence of a unique successfiil theory of heterogeneous catalysis, attempts are being made to correlate catalytic activity with some specific properties of the solid surface. Such correlations help to narrow down the search for a good catalyst for a given reaction. The heterogeneous catalytic performance of material depends on many factors such as [2] Crystal and surface structure of the catalyst. Thermodynamic stability of the catalyst and the reactant. Acid- base properties of the solid surface. Surface defect properties of the catalyst.Electronic and semiconducting properties and the band structure. Co-existence of dilferent types of ions or structures. Adsorption sites and adsorbed species such as oxygen.Preparation method of catalyst , surface area and nature of heat treatment. Molecular structure of the reactants. Many systematic investigations have been performed to correlate catalytic performances with the above mentioned properties. Many of these investigations remain isolated and further research is needed to bridge the gap in the present knowledge of the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The date palm Phoenix dactylifera has played an important role in the day-to-day life of the people for the last 7000 years. Today worldwide production, utilization and industrialization of dates are continuously increasing since date fruits have earned great importance in human nutrition owing to their rich content of essential nutrients. Tons of date palm fruit wastes are discarded daily by the date processing industries leading to environmental problems. Wastes such as date pits represent an average of 10% of the date fruits. Thus, there is an urgent need to find suitable applications for this waste. In spite of several studies on date palm cultivation, their utilization and scope for utilizing date fruit in therapeutic applications, very few reviews are available and they are limited to the chemistry and pharmacology of the date fruits and phytochemical composition, nutritional significance and potential health benefits of date fruit consumption. In this context, in the present review the prospects of valorization of these date fruit processing by-products and wastes’ employing fermentation and enzyme processing technologies towards total utilization of this valuable commodity for the production of biofuels, biopolymers, biosurfactants, organic acids, antibiotics, industrial enzymes and other possible industrial chemicals are discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper estimates productivity growth in Malaysian manufacturing over the period 1983-1999. Malmquist productivity Indices (MPIs) have been computed using non parametric Data Envelopment Analysis (DEA) type linear programming, which show productivity growth sourced from efficiency change and growth in technology. Unlike previous studies, this study identifies the sources of productivity growth in Malaysian manufacturing industries at the five digit breakdown of Malaysian Standard Industrial Classification (MSIC) thereby revealing more industry specific efficiency and technical growth patterns. Results indicated that a high majority of the industries operated with low levels of technical efficiency with little or no improvement over time. Growth estimates revealed that two third of the industries (76 out of total 114 categories) experienced average annual productivity improvement ranging from 0.1% to 7.8%. Average annual technical progress was recorded by 95 industry categories while technical efficiency improvement was achieved by 53 industries. Overall yearly average indicated relatively low productivity growth from the mid 1990’s onwards caused by either efficiency decline or technical regress. Summary results for industries showed that some of the high rates of productivity growth have been recorded in glass and glass products (7.3%), Petroleum and coal (7.2%), industrial chemicals (4.9%) contributed from both efficiency improvement and technical progress ranging from 0.8% to 5.4% and from 1.7% to 4.1%, respectively. These results are expected to have some implications for ongoing and future strategic policy reform in Malaysian manufacturing generating a more sustainable growth for specific industry categories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper estimates productivity growth in Malaysian manufacturing over the period 1983-1999. Malmquist productivity Indices (MPIs) have been computed using non parametric Data Envelopment Analysis (DEA) type linear programming, which show productivity growth sourced from efficiency change and growth in technology. Unlike previous studies, this study identifies the Malaysian manufacturing industries at the five digit breakdown of Malaysian Standard Industrial Classification (MSIC) thereby revealing more industry specific efficiency and technical growth patterns. Results indicate that two third of the industries (76 out of total 114 categories) experienced average annual
productivity improvement ranging from 0.1% to 7.8% over the sampled period. Average annual technical progress was recorded by 95 industry categories while technical efficiency improvement was achieved by 53 industries. Overall yearly average indicated relatively low productivity growth from the mid 1990’s onwards caused by either efficiency decline or technical regress. Summary results for industries reveal that some of the high rates of productivity growth have been recorded in glass and glass products (7.3%), Petroleum and coal (7.2%), industrial chemicals (4.9%) contributed from both efficiency improvement and technical progress ranging from 0.8% to 5.4% and from 1.7% to 4.1%, respectively. These results are expected to have some implications for ongoing and future strategic policy reform in Malaysian manufacturing generating a more sustainable growth for specific industry categories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aromatic amines are environmental pollutants and represent one of the most important classes of industrial and natural chemicals. Some types of complex effluents containing these chemical species, mainly those originated from chemicals plants are not fully efficiently treated by conventional processes. In this work, the use of electrochemical technology through an electrolytic pilot scale flow reactor is considered for treatment of wastewater of a chemical industry manufacturer of antioxidant and anti-ozonant substances used in rubber. Experimental results showed that was possible to remove between 65% and 95% of apparent colour and chemical oxygen demand removal between 30 and 90% in 60 min of treatment, with energy consumption rate from 26 kWh m-3 to 31 kWh m-3. Absorbance, total organic carbon and toxicity analyses resulted in no formation of toxic by-products. The results suggest that the presented electrochemical process is a suitable method for treating this type of wastewater, mainly when pre-treated by aeration. Copyright © 2013 Inderscience Enterprises Ltd.