994 resultados para 658.07
Resumo:
通过对抚顺市温道林场20、53和69年生长白落叶松(Larix olgensis)人工林生物量和营养元素的积累与分配、养分利用效率和养分再吸收效率、养分生物循环的研究,探讨了长白落叶松生长发育不同阶段的养分生态学特征;对东北林业大学帽儿山实验林场17年生兴安落叶松(Larix gmelinii)人工林进行5年的施肥(NH4NO3,15 g•m-2•a-1),研究了施肥对人工林养分生物循环的影响。结果表明: (1)20、53和69年生单株落叶松生物量分别为33.14 kg•tree-1、311.42 kg•tree-1和408.46 kg•tree-1,随林龄的增长而增加。各器官生物量的分配格局为:树干>根>树枝>树皮>针叶。树干生物量的分配比例为50.16%~69.20%,随林龄的增长比例增大,而其他器官生物量的分配比例则逐渐减小。20、53和69年生单株落叶松净生产力分别为3.04 kg•tree-1•a-1、9.68 kg•tree-1•a-1和10.21 kg•tree-1•a-1,随林龄的增长而增大。针叶和树干的净生产力最大,分别占整株林木净生产力的40.07%~47.93%和27.32%~40.97%,并且随林龄的增长而增大。树枝、树皮和根的净生产力则表现出随林龄的增长呈抛物线状。 (2)20、53和69年生单株落叶松N、P、K、Ca、Mg等5种营养元素的总贮量分别为308.14 g•tree-1、2021.01 g•tree-1和2485.24 g•tree-1,随林龄的增长而增加。5种营养元素的贮量大小为:Ca>N>K>Mg>P。树干养分贮量的分配比例为19.74%~34.23%,随林龄的增长呈抛物线状。针叶、树枝和树皮的养分贮量占整株林木养分贮量的比例为35.16%~45.59%,建议在采伐木材时实施去皮、打枝等措施,留下针叶、树枝和树皮在林地中,让其自然分解以使营养元素重新归还利用,对于维持林地的养分平衡和长期生产力具有积极作用。 (3)20、53和69年生单株落叶松年吸收养分量分别为35.31 g•tree-1•a-1、97.83 g•tree-1•a-1和100.08 g•tree-1•a-1,随林龄的增长而增加。5种营养元素的年吸收量大小为:Ca>N>K>Mg>P。落叶松的养分利用效率随林龄的增长而增大,但生长到一定年龄阶段后,其养分利用效率逐渐趋于稳定。落叶松的最佳采伐年龄应为养分利用效率保持稳定时的年龄,此时采伐单位干材所带走的林地养分量较少。不同营养元素的利用效率不同,P的利用效率最高,Mg、K次之,N、Ca最低。不同器官的养分利用效率不同,树干的养分利用效率最高,其次是根、树枝、树皮,针叶最低。随着林龄的增长,树干和根的养分利用效率增大,而树枝和树皮的养分利用效率减小。 (4)落叶松叶片的N再吸收效率为50.76%~55.11%,随林龄的增长表现出增大的趋势;P和K再吸收效率分别为64.38%~68.85%和87.85%~90.62%,随林龄的增长表现出减小的趋势。从养分利用效率和养分再吸收效率综合判断,本研究区落叶松生长可能受土壤N、P、K供应的限制,3种营养元素的限制作用大小为:K>P>N。 (5)落叶松人工林养分的年吸收量、年存留量和年归还量分别为51.94~78.35 kg•hm-2•a-1、17.77~29.43 kg•hm-2•a-1和34.18~48.92 kg•hm-2•a-1,均随林龄的增长而减少,这与林分密度逐渐减小有关。5种营养元素的年吸收量和年存留量大小均为:Ca>N>K>Mg>P,年归还量大小为:Ca>N>Mg>K>P。落叶松人工林的养分循环速率为0.624~0.658,随林龄的增长而增大。5种营养元素的循环速率以Mg、N最快,Ca、P次之,K最慢。K的循环速率较低,可能与研究区土壤K含量较低而表现出的K再吸收效率较高有关。 (6)施肥导致落叶松叶片N再吸收效率显著降低,而凋落叶片的N浓度显著增加,从而使凋落叶片的C/N比由80.29降低到60.29。施肥林地凋落叶片C/N比的降低使其分解速率加快,有利于其养分归还土壤,从而加快了系统的养分循环速率,提高了系统的养分利用率。因此,在人工林经营中,施肥不仅能提高林地生产力,而且对于维持林地养分循环具有积极作用。
Resumo:
能量代谢指动物在进行生理活动(如摄食、消化以及动物的活动等)时所消耗能量的总和,一般以动物的呼吸率利排泄率来估计动物的能量代谢。其主要研究内容是闸明生物能量代谢的基木规律以及与环境闪子的关系。菲律宾蛤仔(Ruditapesphil ippmarum)是我国一种重要的养殖贝类,关于其能量代谢的研究却较少,这种状况妨碍了菲律宾蛤仔养殖生态理论的完善和养殖技术的提高。本研究主要对菲律宾蛤仔呼吸率和排泄率的基本规律(能量代谢与体重的关系、能量代谢的昼夜变化)及其与环境因子(饵料浓度、水温、栖息底质环境)的关系进行探讨。研究结果如下:1.不同体重菲律宾蛤仔代谢率小同。实验川菲律宾蛤仔分三种大小:l(干肉重为0.07-0.14g)、ll(干肉重0.27-0.34g)、III(干肉重0.45~0.63g)。温度包括:26℃(八月)、20℃(十月)、1 5℃(十二月)、9℃(一月)。实验共设四个饵料浓度:2.28±0.25,6.454±0.44,10.284±0.82,15.414±1.56mgTPM/L(TPM,总颗粒物),饵料中POM(颗粒有机物)含量都为4.68±1.64 mg/L。常温下菲律宾蛤仔代谢率随着体重的增大而增大。15℃、20~C、26℃时蛤仔呼吸率与干肉重呈明显的幂函数关系R=aW~b,a值变动范围为0.1076-0.3309;b值变动范围为0.239l~0.8381;蛤仔排泄率与干肉重也呈明显的幂函数关系N=aW~b,a值变动范围为14.213~68.362:b值变动范围为0.3673-1.1 532。9℃(饵料浓度为2.28±0.25mgTPM/L)、20℃(饵料浓度为10.284-0.82mgTPM/L)、26℃(饵料浓度为6.454±0.44mgTPM/L)时不同体重蛤仔氧氮比差异显著,其它情况下不同体重蛤仔氧氮比差异不显著。2.常温下菲律宾蛤仔代谢率受饵料浓度的影响,不同大小蛤仔受饵料浓度的影响程度不同。I组蛤仔呼吸率受饵料浓度的显著影响,II组III组蛤仔呼吸率只在9℃(一月)和26~C(八月)时受饵料浓度的显著影响。26℃时影响最显著,26℃时I组蛤仔在饵料浓度为2.28±0.25,6.45±0.44,l0.28±0.82,15.4l±1.56mgTPM/L时呼吸率分别是O.086,0.146,0.073,0.093(mlO_2/h);ll组蛤仔在上述浓度饵料中呼吸率分别是0.138,0.214,0.J 26,0.12l(mlO_2/h);III组蛤仔在上述浓度饵料中呼吸率分别是0.129,0.266,0.186,0.192(mlO_2/h)。菲律宾蛤仔呼吸率在饵料浓度为6.45±0.44 mgTPM/L时最高,蛤仔呼吸率在其它饵料浓度时都会降低。菲律宾蛤仔排泄率在饵料浓度为10.28±0.82 mgTPM/L和15.4l士1.56mgTPM/L时显著高于其它浓度组,9℃时这种趋势更明显,9℃时饵料浓度为2.28±0.25,6.454±044,lO.284±0.82,15.41±1.56mgTPM/L中I组蛤仔排泄率分别是4.297,2.874,8.003,6.658(μgNH_3-N/h);II组蛤仔在上述浓度饵料中排泄率分别是4.011,3.609,10.427,12.732(μgNH_3-N/h);III组蛤仔在上述浓度饵料中排泄率分别是2.28 l,6.452,10.283,15.417(μgNH_3-N/h)。3.菲律宾蛤仔代谢率受自然温度的显著影Ⅱ向。I组蛤仔在9℃、15℃、20℃、26℃时呼吸率平均为0.057,0.085,0.039,O.099;II组蛤仔在上述四个温度中呼吸率平均为0.08,O.128,0.089,0.149(mlO_2/h),I组和II组蛤仔在9℃和20~C时呼吸率较低,在26℃时呼吸率最高。III组蛤仔在上述四个温度中呼吸率平均为0.09,O.1 59,O.143,O.193(mlO_2/h),在9℃时llI组蛤仔呼吸率显著低于其它温度组。温度为9℃、15℃、20℃、26℃时l组蛤仔排泄率平均为5.458,13.169,4.946,11.138(μgNH_3-N/h):II组蛤仔在上述温度中排泄率平均为7.695,23.578,8.319,23.90l(μgNH_3-N/h);III组蛤仔在上述温度中排泄率平均为11.738,27.443,15.658,35.407(μgNH_3-N/h),蛤仔排泄率在15℃和26℃时均高于9℃和20℃。4.摄食状态与饥饿状态菲律宾蛤仔代谢率有明显不同。26℃时蛤仔静止状态呼吸率平均为0.336(m102/g干重.h),摄食状态呼吸率平均为0.656(ml0_2干重.h),摄食状态呼吸率比静止状态平均升高了0 32(ml0_2/g干重.h);26℃时蛤仔静止状态排泄率平均为39.471(μgNH_3-N/g干重.h),摄食状态排泄率平均为88.08(μgNH_3-N/g干重.h),摄食状态排泄率比静止状态排泄率平均升高了48.6(μgNH_3-N/g干重.h)。摄食状态代谢率平均是静止状态的2~3倍。根据摄食引起的呼吸率和排泄率升高量得出每氧化产生lμgNH_3-N需0_2量平均为7.05μl。5.人工控制温度对菲律宾蛤仔代谢率有明显影响。不同大小蛤仔受温度的影响程度不同。在温度5℃、10℃、l 5℃、20℃、26℃,I组和II组蛤仔呼吸率都随着温度的升高而升高,在10℃~l5℃和20℃~26℃这二个温度变化范围内呼吸率变化最大,在20℃~26℃时I组蛤仔呼吸率变动范围为O.85~1.04(m10_2/g干重.h)、II组蛤仔变动范围为0.57~0.86(ml0_2/g干重.h)。III组蛤仔呼吸率只在5℃~l0℃时明显增高,变动范围为0.09~0.5l(m10_2/g干重.h),在10℃~26℃范围内变化不大。I组和II组蛤仔排泄率随着温度的升高而升高,变动幅度较大,在5℃~26℃范围内其排泄率变动范围为10.32~81.53(μgNH_3-N/g干重.h);而 III组蛤仔排泄率只在5℃~15℃时随着温度的升高而升高,其排泄率变动范围为6.75~23.77(μgNH_3-N/g干重.h),在15℃~26℃范围内几乎不变。III组蛤仔的适温范围比I组和II组蛤仔广。菲律宾蛤仔在5℃和10℃时氧氮比变化明显,变动范围为2.76~11.44,在15~26℃时变化不大。6.菲律宾蛤仔代谢率有明显的日节律性,呈正弦曲线型变化。蛤仔夜问代谢率明显升高。I组蛤仔夜间呼吸率平均为0.867(m10_2/g干重.h),白天呼吸率平均为O.504(m10_2/g干重.h);II组蛤仔夜间呼吸率平均为0.438(m10_2/g干重.h),白天呼吸率平均为0.36l(m102/g干重.h);III组蛤仔夜间呼吸率平均为0.409(m10_2/g干重.h),白天呼吸率平均为0.252(m102/g干重.h)。在22:00-23:00菲律宾蛤仔呼吸率最高。7.底质环境对菲律宾蛤仔的代谢率有明显影响。在饥饿状态下菲律宾蛤仔在泥沙底质中呼吸率平均为l 406(m10_2/g干重h),在无泥沙环境中呼吸率平均为O.963(ml0_2/g干重.h);摄食状态下菲律宾蛤仔在泥沙底质中呼吸率平均为1.59l(m102/g干重.h),在无泥沙环境中呼吸率平均为1.115(m10_2/g干重.h)。在饥饿状态下菲律宾蛤仔在泥沙底质中排泄率平均为78.934(μgNH_3-N/g 干重.h),在无泥沙环境巾排泄率平均为45.043(μgNH_3-N/g干重.h);摄食状态下菲律宾蛤仔在泥沙底质中排泄率平均为87.12l(μgNH_3-N/g干重.h),在无泥沙底质中排泄率平均为58.354(μgNH_3-N/g干重.h)。蛤仔在泥沙环境中呼吸率和排泄率都明显升高。
Resumo:
2007
Resumo:
2007
Resumo:
2007
Resumo:
2007
Resumo:
26 hojas : fotografías a color.
Resumo:
Handwritten letter from Timothy Merritt to Rev. Epaphras "Kibbe[sic]" regarding religious developments in Boston as well as the death of Merritt's son. Dated 10/07/1803
Resumo:
Spank follows the journeys of two women as they reveal stories from private and public sources set apart by two centuries. It investigates notions of 'faction' and what is filtered out historically within a theme of female trauma and the body. [ABSTRACT BY THE AUTHOR]
Resumo:
Performance at the Joinery, Dublin, at at Spatial Music Collective concert
Resumo:
Dissertação de mest., Finanças Empresariais, Faculdade de Economia, Univ. do Algarve, 2003