929 resultados para 54-424
Resumo:
Hydrothermal deposits "sensu stricto" have been recovered during the FAMOUS cruise and Leg 54 of the Deep Sea Drilling Project near the Galapagos Spreading Centre. The studied sediments, mainly composed of clay material, have very poor REE concentrations, below about ten ppm. The shale-normalized patterns are characterized by a significant enrichment in heavy rare earths and show a negative Ce anomaly. The magnitude of this anomaly fluctuates but is generally lower than the seawater Ce anomaly. The geochemical characteristics of these hydrothermal deposits are in contrast with those of metalliferous sediments which are more enriched in trace elements, especially in REE.
Resumo:
Use of the hydraulic piston corer during DSDP Leg 70 in the Galapagos mounds area allowed recovery of an undisturbed sedimentary sequence down to the basement. It thus became possible to establish the chronology of different events. Several holes on and off the mounds were studied, using uranium series disequilibrium methods of age determination and oxygen isotope stratigraphy. The following sequence was thereby established: 1) From 600,000 to 300,000 years ago there was normal pelagic sedimentation, with an injection of uranium-rich solution, probably of hydrothermal origin, between 400,000 and 300,000 years ago. 2) From 300,000 to 90,000 years ago, nontronitic clay formed, replacing a pre-existing sediment. 3) From 60,000 to 20,000 years ago, manganese oxide deposits formed, probably also replacing pre-existing sediments. 4) About 19,000 years ago there occurred a uranium injection from seawater, attributed to the end of the hydrothermal circulation. In some holes, especially Hole 424, Leg 54, younger manganese oxides have been found, indicating that some mounds may be presently active.
Resumo:
Precise velocity and density measurements at atmospheric and elevated pressures have been obtained on basalts drilled in 13 holes during Leg 54. The vp-sigma data show systematics which are controlled by the degree of crystallinity (or conversely, glassiness), microstructure, and original mineralogy and chemistry. Extensively fractionated basalts with marked iron enrichment produce anomalously low measured velocities at densities above 2.90 g/cm**3. Also, the effective in situ pressure acting on Leg 54 basalts is less than hydrostatic, and perhaps close to zero. At zero effective pressure, the measured velocities average 2.5 km/s higher than East Pacific Rise upper crustal velocities determined by seismic refraction. This implies that the in situ velocities are undoubtedly a result of the highly fragmented nature of East Pacific Rise crust.
Resumo:
A variety of secondary minerals, formed in response to different oxidation and hydration states, are found in vugs and on fracture surfaces of the basalt cores from DSDP Leg 54. The minerals are smectite (blue to grey), high-magnesium calcite, manganoan calcite, aragonite, iron oxides, phillipsite, todorokite, marcasite, and hydrobiotite. The relationship of the mineral assemblages to four depositional modes of the basalts are delineated. A definite sequence and genetic link exists between mineral type and host rock which is dependent upon the origin and subsequent cooling history of the basalt.