996 resultados para 46,XY DISORDERS
Resumo:
Human multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have become an important and attractive therapeutic tool since they are easily isolated and cultured, have in vitro expansion potential, substantial plasticity and secrete bioactive molecules that exert trophic effects. The human umbilical cord as a cell source for cell therapy will help to avoid several ethical, political, religious and technical issues. One of the main issues with SC lines from different sources, mainly those of embryonic origin, is the possibility of chromosomal alterations and genomic instability during in vitro expansion. Cells isolated from one umbilical cord exhibited a rare balanced paracentric inversion, likely a cytogenetic constitutional alteration, karyotype: 46,XY,inv(3)(p13p25~26). Important genes related to cancer predisposition and others involved in DNA repair are located in 3p25~26. Titanium is an excellent biomaterial for bone-implant integration; however, the use can result in the generation of particulate debris that can accumulate in the tissues adjacent to the prosthesis, in the local bone marrow, in the lymph nodes, liver and spleen. Subsequently may elicit important biological responses that aren´t well studied. In this work, we have studied the genetic stability of MSC isolated from the umbilical cord vein during in vitro expansion, after the cryopreservation, and under different concentrations and time of exposition to titanium microparticles. Cells were isolated, in vitro expanded, demonstrated capacity for osteogenic, adipogenic and chondrogenic differentiation and were evaluated using flow cytometry, so they met the minimum requirements for characterization as MSCs. The cells were expanded under different concentrations and time of exposition to titanium microparticles. The genetic stability of MSCs was assessed by cytogenetic analysis, fluorescence in situ hybridization (FISH) and analysis of micronucleus and other nuclear alterations (CBMN). The cells were able to internalize the titanium microparticles, but MSCs preserve their morphology, differentiation capacity and surface marker expression profiles. Furthermore, there was an increase in the genomic instability after long time of in vitro expansion, and this instability was greater when cells were exposed to high doses of titanium microparticles that induced oxidative stress. It is necessary always assess the risks/ benefits of using titanium in tissue therapy involving MSCs, considering the biosafety of the use of bone regeneration using titanium and MSCs. Even without using titanium, it is important that the therapeutic use of such cells is based on analyzes that ensure quality, security and cellular stability, with the standardization of quality control programs appropriate. In conclusion, it is suggested that cytogenetic analysis, FISH analysis and the micronucleus and other nuclear alterations are carried out in CTMH before implanting in a patient
Resumo:
Infertility is directly related to chromosomal abnormalities in germ cells. Among them, the aneuploidies are the most frequent chromosomal abnormalities and responsible for embryo implantation failures, miscarriages, fetal losses and newborns with congenital malformations, mental disability and neuropsychomotor developmental delay. Male patients with normal somatic karyotype may present different rates of aneuploidies in sperm, resulting in abnormal embryos. This study aimed to correlate the frequency of chromosomal aneuploidies in spermatozoa with embryo implantation rate in couples undergoing assisted reproductive techniques. The methodology has included chromosomal analysis by GTG banding and molecular cytogenetic study using Fluorescent In Situ Hybridization technique for evaluation of chromosomes 9, X and Y in germ cells of 22 patients referred to the Human Reproduction Service of the Clinical Hospital FMRP-USP. Embryo implantation rates were determined by hormonal evaluation in maternal peripheral blood and ultrasound confirmation. Two patients presented abnormal karyotype, characterized by polymorphism of the heterochromatic region of the long arm of chromosome 9 and a satellite in the short arm of chromosome 22. Both alterations, usually considered variants of normality, have been related to infertility phenotype and miscarriages. Significant differences were detected between couples who presented pregnancy (group 1) and couples with embryo implantation failure (group 2), with higher frequency of aneusomy and diploidy of chromosome 9, as well as total aneuploidy in sperm of group 2 patients. Our results suggest a correlation between aneuploidy and embryo implantation rates, since the infertile group with reproductive failure has showed higher frequency of aneuploidy. Screening for aneuploidies detection in male germ cells should be included in order to decrease embryo implantation failures, miscarriages and fetuses with chromosomal ...
Resumo:
Osteochondroma is a cartilage capped benign tumor developing mainly at the juxta-epiphyseal region of long bones. The rate of malignant transformation, mainly into chondrosarcoma, is estimated to be less than 1-3%. Transformation into osteosarcoma is very rare and has been reported only thirteen times. There is little information on treatment and outcome. We report the case of a secondary osteosarcoma arising in the left tibia of a 23-year-old male, 10 years after the initial diagnosis of osteochondroma and after two partial resections. Malignant transformation occurred at the stalk and not at the cartilage cap, as would normally be expected. Chromosome banding analysis revealed the karyotype: 46,XY, t(3;13)(q21;q34) [2]/46,XY [18]. Records from additional cases will help determine the parameters that define these rare secondary bone lesions.
Resumo:
372 osteochondrodysplasias and genetically determined dysostoses were reported in 2007 [Superti-Furga and Unger, 2007]. For 215 of these conditions, an association with one or more genes can be stated, while the molecular changes for the remaining syndromes remain illusive to date. Thus, the present dissertation aims at the identification of novel genes involved in processes regarding cartilage/ bone formation, growth, differentiation and homeostasis, which may serve as candidate genes for the above mentioned conditions. Two different approaches were undertaken. Firstly, a high throughput EST sequencing project from a human fetal cartilage library was performed to identify novel genes in early skeletal development (20th week of gestation until 2nd year of life) that could be investigated as potential candidate genes. 5000 EST sequences were generated and analyzed representing 1573 individual transcripts, corresponding to known (1400) and to novel, yet uncharacterized genes (173). About 7% of the proteins were already described in cartilage/ bone development or homeostasis, showing that the generated library is tissue specific. The remaining profile of this library was compared to previously published libraries from different time points (8th–12th, 18th–20th week and adult human cartilage) that also showed a similar distribution, reflecting the quality of the presented library analyzed. Furthermore, three potential candidate genes (LRRC59, CRELD2, ZNF577) were further investigated and their potential involvement in skeletogenesis was discussed. Secondly, a disease-orientated approach was undertaken to identify downstream targets of LMX1B, the gene causing Nail-Patella syndrome (NPS), and to investigate similar conditions. Like NPS, Genitopatellar syndrome (GPS) is characterized by aplasia or hypoplasia of the patella and renal anomalies. Therefore, six GPS patients were enrolled in a study to investigate the molecular changes responsible for this relatively rare disease. A 3.07 Mb deletion including LMX1B and NR5A1 (SF1) was found in one female patient that showed features of both NPS and GPS and investigations revealed a 46,XY karyotype and ovotestes indicating true hermaphroditism. The microdeletion was not seen in any of the five other patients with GPS features only, but a potential regulatory element between the two genes cannot be ruled out yet. Since Lmx1b is expressed in the dorsal limb bud and in podocytes, proteomic approaches and expression profiling were performed with murine material of the limbs and the kidneys to identify its downstream targets. After 2D-gel electrophoresis with protein extracts from E13.5 fore limb buds and newborn kidneys of Lmx1b wild type and knock-out mice and mass spectrometry analysis, only two proteins, agrin and carbonic anhydrase 2, remained of interest, but further analysis of the two genes did not show a transcriptional down regulation by Lmx1b. The focus was switched to expression profiles and RNA from newborn Lmx1b wild type and knock-out kidneys was compared by microarray analysis. Potential Lmx1b targets were almost impossible to study, because of the early death of Lmx1b deficient mice, when the glomeruli, containing podocytes, are still immature. Because Lmx1b is also expressed during limb development, RNA from wild type and knock-out Lmx1b E11.5 fore limb buds was investigated by microarray, revealing four potential Lmx1b downstream targets: neuropilin 2, single-stranded DNA binding protein 2, peroxisome proliferative activated receptor, gamma, co-activator 1 alpha, and short stature homeobox 2. Whole mount in situ hybridization strengthened a potential down regulation of neuropilin 2 by Lmx1b, but further investigations including in situ hybridization and protein-protein interaction studies will be needed.
Resumo:
Patients with P450 oxidoreductase (POR) deficiency typically present with adrenal insufficiency, genital anomalies and bony malformations resembling the Antley-Bixler craniosynostosis syndrome. Since our first report in 2004, more than 40 POR mutations have been identified in over 65 patients. POR is the obligate electron donor to all microsomal P450 enzymes, including the steroidogenic enzymes CYP17A1, CYP21A2 and CYP19A1. POR deficiency may cause disordered sexual development manifested as genital undervirilization in 46, XY newborns as well as overvirilization in those who are 46, XX. This may be explained by impaired aromatization of fetal androgens that may cause maternal virilization and low urinary estriol levels during pregnancy. In addition, the alternate 'backdoor' pathway of androgen biosynthesis, which leads to dihydrotestosterone production bypassing androstenedione and testosterone, may also play a role. Functional assays studying the effects of POR mutations on steroidogenesis showed that several POR variants impaired CYP17A1, CYP21A2 and CYP19A1 activities to different degrees, indicating that each POR variant must be studied separately for each potential target P450 enzyme. POR variants may also affect skeletal development and drug metabolism. As most drugs are metabolized by hepatic microsomal P450 enzymes, studies of the impact of POR mutations on drug-metabolizing P450s are particularly important.
Resumo:
Human sexual determination is initiated by a cascade of genes that lead to the development of the fetal gonad. Whereas development of the female external genitalia does not require fetal ovarian hormones, male genital development requires the action of testicular testosterone and its more potent derivative dihydrotestosterone (DHT). The "classic" biosynthetic pathway from cholesterol to testosterone in the testis and the subsequent conversion of testosterone to DHT in genital skin is well established. Recently, an alternative pathway leading to DHT has been described in marsupials, but its potential importance to human development is unclear. AKR1C2 is an enzyme that participates in the alternative but not the classic pathway. Using a candidate gene approach, we identified AKR1C2 mutations with sex-limited recessive inheritance in four 46,XY individuals with disordered sexual development (DSD). Analysis of the inheritance of microsatellite markers excluded other candidate loci. Affected individuals had moderate to severe undervirilization at birth; when recreated by site-directed mutagenesis and expressed in bacteria, the mutant AKR1C2 had diminished but not absent catalytic activities. The 46,XY DSD individuals also carry a mutation causing aberrant splicing in AKR1C4, which encodes an enzyme with similar activity. This suggests a mode of inheritance where the severity of the developmental defect depends on the number of mutations in the two genes. An unrelated 46,XY DSD patient carried AKR1C2 mutations on both alleles, confirming the essential role of AKR1C2 and corroborating the hypothesis that both the classic and alternative pathways of testicular androgen biosynthesis are needed for normal human male sexual differentiation.
Resumo:
Context Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). Objective StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. Design To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Setting Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Patients Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. Results StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (~30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. Conclusions StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.
Resumo:
Patients with adrenal insufficiency, genital anomalies and bony malformations resembling the Antley- Bixler syndrome (a craniosynostosis syndrome), are likely to have P450 oxidoreductase (POR) deficiency. Since our first report in 2004, about 26 recessive POR mutations have been identified in 50 patients. POR is the obligate electron donor to all microsomal (type II) P450 enzymes, including the steroidogenic enzymes CYP17A1, CYP21A2 and CYP19A1. POR deficiency may cause disordered sexual development manifested as genital undervirilization in 46,XY newborns as well as overvirilization in those who are 46,XX. This may be explained by impaired aromatization of fetal androgens which may also lead to maternal virilization and low urinary estriol levels during pregnancy. A role for the alternate 'backdoor' pathway of androgen biosynthesis, leading to dihydrotestosterone production bypassing androstenedione and testosterone, has been suggested in POR deficiency but remains unclear. POR variants may play an important role in drug metabolism, as most drugs are metabolized by hepatic microsomal P450 enzymes. However, functional assays studying the effects of specific POR mutations on steroidogenesis showed that several POR variants impaired CYP17A1, CYP21A2 and CYP19A1 activities to different degrees, indicating that each POR variant must be studied separately for each potential target P450 enzyme. Thus, the impact of POR mutations on drug metabolism by hepatic P450s requires further investigation.
Resumo:
We report a case of 34 year old woman how has been hospitalized at the age of 6 month with persistent vomitus. The vomitus was found to be caused by adrenal insufficiency with lack of all hormones of steroidobiosynthesis. The phenotypical femal child was diagnosed to have congenital lipoid adrenal hyperplasia with 46,XY DSD. 24 years later a homozygote mutation in the StAR-gene (L260P), which was first described in Switzerland, has been identified.
Resumo:
OBJECTIVE The steroidogenic acute regulatory protein (StAR) transports cholesterol to the mitochondria for steroidogenesis. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH) which is characterized by impaired synthesis of adrenal and gonadal steroids causing adrenal insufficiency, 46,XY disorder of sex development (DSD) and failure of pubertal development. Partial loss of StAR activity may cause adrenal insufficiency only. PATIENT A newborn girl was admitted for mild dehydration, hyponatremia, hyperkalemia and hypoglycaemia and had normal external female genitalia without hyperpigmentation. Plasma cortisol, 17OH-progesterone, DHEA-S, androstendione and aldosterone were low, while ACTH and plasma renin activity were elevated, consistent with the diagnosis of primary adrenal insufficiency. Imaging showed normal adrenals, and cytogenetics revealed a 46,XX karyotype. She was treated with fluids, hydrocortisone and fludrocortisone. DESIGN, METHODS AND RESULTS Genetic studies revealed a novel homozygous STAR mutation in the 3' acceptor splice site of intron 4, c.466-1G>A (IVS4-1G>A). To test whether this mutation would affect splicing, we performed a minigene experiment with a plasmid construct containing wild-type or mutant StAR gDNA of exons-introns 4-6 in COS-1 cells. The splicing was assessed on total RNA using RT-PCR for STAR cDNAs. The mutant STAR minigene skipped exon 5 completely and changed the reading frame. Thus, it is predicted to produce an aberrant and shorter protein (p.V156GfsX19). Computational analysis revealed that this mutant protein lacks wild-type exons 5-7 which are essential for StAR-cholesterol interaction. CONCLUSIONS STAR c.466-1A skips exon 5 and causes a dramatic change in the C-terminal sequence of the protein, which is essential for StAR-cholesterol interaction. This splicing mutation is a loss-of-function mutation explaining the severe phenotype of our patient. Thus far, all reported splicing mutations of STAR cause a severe impairment of protein function and phenotype.
Resumo:
CONTEXT Lipoid congenital adrenal hyperplasia (CAH) is the most severe form of CAH leading to impaired production of all adrenal and gonadal steroids. Mutations in the gene encoding steroidogenic acute regulatory protein (StAR) cause lipoid CAH. OBJECTIVE We investigated three unrelated patients of Swiss ancestry who all carried novel mutations in the StAR gene. All three subjects were phenotypic females with absent Müllerian derivatives, 46,XY karyotype, and presented with adrenal failure. METHODS AND RESULTS StAR gene analysis showed that one patient was homozygous and the other two were heterozygous for the novel missense mutation L260P. Of the heterozygote patients, one carried the novel missense mutation L157P and one had a novel frameshift mutation (629-630delCT) on the second allele. The functional ability of all three StAR mutations to promote pregnenolone production was severely attenuated in COS-1 cells transfected with the cholesterol side-chain cleavage system and mutant vs. wild-type StAR expression vectors. CONCLUSIONS These cases highlight the importance of StAR-dependent steroidogenesis during fetal development and early infancy; expand the geographic distribution of this condition; and finally establish a new, prevalent StAR mutation (L260P) for the Swiss population.
Resumo:
We identified a new point mutation in the CYP19 gene responsible for aromatase (P450arom) deficiency in a 46,XY male infant with unremarkable clinical findings at birth. This boy is homozygote for a 1-bp (C) deletion in exon 5 of the aromatase gene causing a frame-shift mutation. The frame-shift results in a prematurely terminated protein that is inactive due to the absence of the functional regions of the enzyme. Aromatase deficiency was suspected prenatally because of the severe virilization of the mother during the early pregnancy, and the diagnosis was confirmed shortly after birth. Four weeks after birth, the baby boy showed extremely low levels of serum estrogens, but had a normal level of serum free testosterone; in comparison with the high serum concentration of androstenedione at birth, a striking decrease occurred by 4 weeks postnatally. We previously reported elevated basal and stimulated FSH levels in a female infant with aromatase deficiency in the first year of life. In contrast, in the male infant, basal FSH and peak FSH levels after standard GnRH stimulation tests were normal. This finding suggests that the contribution of estrogen to the hypothalamic-pituitary gonadotropin-gonadal feedback mechanism is different in boys and girls during infancy and early childhood. In normal girls, serum estradiol concentrations strongly correlate with circulating inhibin levels, and thus, low inhibin levels may contribute to the striking elevation of FSH in young girls with aromatase deficiency. In contrast, estradiol levels are physiologically about a 7-fold lower in boys than in girls, and serum inhibin levels remain elevated even though levels of FSH, LH, and testosterone are decreased.
Resumo:
CONTEXT Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. OBJECTIVE To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. PATIENTS 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. METHODS SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). RESULTS Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. CONCLUSIONS Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.
Resumo:
Defects of androgen biosynthesis cause 46,XY disorder of sexual development (DSD). All steroids are produced from cholesterol and the early steps of steroidogenesis are common to mineralocorticoid, glucocorticoid and sex steroid production. Genetic mutations in enzymes and proteins supporting the early biosynthesis pathways cause adrenal insufficiency (AI), DSD and gonadal insufficiency. The classic androgen biosynthesis defects with AI are lipoid CAH, CYP11A1 and HSD3B2 deficiencies. Deficiency of CYP17A1 rarely causes AI, and HSD17B3 or SRD5A2 deficiencies only cause 46,XY DSD and gonadal insufficiency. All androgen biosynthesis depends on 17,20 lyase activity of CYP17A1 which is supported by P450 oxidoreductase (POR) and cytochrome b5 (CYB5). Therefore 46,XY DSD with apparent 17,20 lyase deficiency may be due to mutations in CYP17A1, POR or CYB5. Illustrated by patients harboring mutations in SRD5A2, normal development of the male external genitalia depends largely on dihydrotestosterone (DHT) which is converted from circulating testicular testosterone (T) through SRD5A2 in the genital skin. In the classic androgen biosynthetic pathway, T is produced from DHEA and androstenedione/-diol in the testis. However, recently found mutations in AKR1C2/4 genes in undervirilized 46,XY individuals have established a role for a novel, alternative, backdoor pathway for fetal testicular DHT synthesis. In this pathway, which has been first elucidated for the tammar wallaby pouch young, 17-hydroxyprogesterone is converted directly to DHT by 5α-3α reductive steps without going through the androgens of the classic pathway. Enzymes AKR1C2/4 catalyse the critical 3αHSD reductive reaction which feeds 17OH-DHP into the backdoor pathway. In conclusion, androgen production in the fetal testis seems to utilize two pathways but their exact interplay remains to be elucidated.
Resumo:
CONTEXT 3β-hydroxysteroid dehydrogenase deficiency (3βHSD) is a rare disorder of sexual development and steroidogenesis. There are two isozymes of 3βHSD, HSD3B1 and HSD3B2. Human mutations are known for the HSD3B2 gene which is expressed in the gonads and the adrenals. Little is known about testis histology, fertility and malignancy risk. OBJECTIVE To describe the molecular genetics, the steroid biochemistry, the (immuno-)histochemistry and the clinical implications of a loss-of-function HSD3B2 mutation. METHODS Biochemical, genetic and immunohistochemical investigations on human biomaterials. RESULTS A 46,XY boy presented at birth with severe undervirilization of the external genitalia. Steroid profiling showed low steroid production for mineralocorticoids, glucocorticoids and sex steroids with typical precursor metabolites for HSD3B2 deficiency. The genetic analysis of the HSD3B2 gene revealed a homozygous c.687del27 deletion. At pubertal age, he showed some virilization of the external genitalia and some sex steroid metabolites appeared likely through conversion of precursors secreted by the testis and converted by unaffected HSD3B1 in peripheral tissues. However, he also developed enlarged breasts through production of estrogens in the periphery. Testis histology in late puberty revealed primarily a Sertoli-cell-only pattern and only few tubules with arrested spermatogenesis, presence of few Leydig cells in stroma, but no neoplastic changes. CONCLUSIONS The testis with HSD3B2 deficiency due to the c.687del27 deletion does not express the defective protein. This patient is unlikely to be fertile and his risk for gonadal malignancy is low. Further studies are needed to obtain firm knowledge on malignancy risk for gonads harboring defects of androgen biosynthesis.