38 resultados para 3GPP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large scale development of an Intelligent Transportation System is very close. The main component of such a smart environment is the network that provides connectivity for all vehicles. Public safety is the most demanding application because requires a fast, reliable and secure communication. Although IEEE 802.11p is presently the only full wireless standard for vehicular communications, recent advancements in 3GPP LTE provide support to direct communications and the ongoing activities are also addressing the vehicle to vehicle case. This thesis focuses on the resource allocation procedures and performance of LTE-V2V. To this aim, a MATLAB simulator has been implemented and results have been obtained adopting different mobility models for both in-coverage and out-of-coverage scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern networks are undergoing a fast and drastic evolution, with software taking a more predominant role. Virtualization and cloud-like approaches are replacing physical network appliances, reducing the management burden of the operators. Furthermore, networks now expose programmable interfaces for fast and dynamic control over traffic forwarding. This evolution is backed by standard organizations such as ETSI, 3GPP, and IETF. This thesis will describe which are the main trends in this evolution. Then, it will present solutions developed during the three years of Ph.D. to exploit the capabilities these new technologies offer and to study their possible limitations to push further the state-of-the-art. Namely, it will deal with programmable network infrastructure, introducing the concept of Service Function Chaining (SFC) and presenting two possible solutions, one with Openstack and OpenFlow and the other using Segment Routing and IPv6. Then, it will continue with network service provisioning, presenting concepts from Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC). These concepts will be applied to network slicing for mission-critical communications and Industrial IoT (IIoT). Finally, it will deal with network abstraction, with a focus on Intent Based Networking (IBN). To summarize, the thesis will include solutions for data plane programming with evaluation on well-known platforms, performance metrics on virtual resource allocations, novel practical application of network slicing on mission-critical communications, an architectural proposal and its implementation for edge technologies in Industrial IoT scenarios, and a formal definition of intent using a category theory approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In its open and private-based dimension, the Internet is the epitome of the Liberal International Order in its global spatial dimension. Therefore, normative questions arise from the emergence of powerful non-liberal actors such as China in Internet governance. In particular, China has supported a UN-based multilateral Internet governance model based on state sovereignty aimed at replacing the existing ICANN-based multistakeholder model. While persistent, this debate has become less dualistic through time. However, fear of Internet fragmentation has increased as the US-China technological competition grew harsher. This thesis inquires “(To what extent) are Chinese stakeholders reshaping the rules of Global Internet Governance?”. This is further unpacked in three smaller questions: (i) (To what extent) are Chinese stakeholders contributing to increased state influence in multistakeholder fora?; (ii) (how) is China contributing to Internet fragmentation?; and (iii) what are the main drivers of Chinese stakeholders’ stances? To answer these questions, Chinese stakeholders’ actions are observed in the making and management of critical Internet resources at the IETF and ICANN respectively, and in mobile connectivity standard-making at 3GPP. Through the lens of norm entrepreneurship in regime complexes, this thesis interprets changes and persistence in the Internet governance normative order and Chinese attitudes towards it. Three research methods are employed: network analysis, semi-structured expert interviews, and thematic document analysis. While China has enhanced state intervention in several technological fields, fostering debates on digital sovereignty, this research finds that the Chinese government does not exert full control on its domestic private actors and concludes that Chinese stakeholders have increasingly adapted to multistakeholder Internet governance as they grew influential within it. To enhance control over Internet-based activities, the Chinese government resorted to regulatory and technical control domestically rather than establishing a splinternet. This is due to Chinese stakeholders’ interest in retaining the network benefits of global interconnectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, application domains such as smart cities, agriculture or intelligent transportation, require communication technologies that combine long transmission ranges and energy efficiency to fulfill a set of capabilities and constraints to rely on. In addition, in recent years, the interest in Unmanned Aerial Vehicles (UAVs) providing wireless connectivity in such scenarios is substantially increased thanks to their flexible deployment. The first chapters of this thesis deal with LoRaWAN and Narrowband-IoT (NB-IoT), which recent trends identify as the most promising Low Power Wide Area Networks technologies. While LoRaWAN is an open protocol that has gained a lot of interest thanks to its simplicity and energy efficiency, NB-IoT has been introduced from 3GPP as a radio access technology for massive machine-type communications inheriting legacy LTE characteristics. This thesis offers an overview of the two, comparing them in terms of selected performance indicators. In particular, LoRaWAN technology is assessed both via simulations and experiments, considering different network architectures and solutions to improve its performance (e.g., a new Adaptive Data Rate algorithm). NB-IoT is then introduced to identify which technology is more suitable depending on the application considered. The second part of the thesis introduces the use of UAVs as flying Base Stations, denoted as Unmanned Aerial Base Stations, (UABSs), which are considered as one of the key pillars of 6G to offer service for a number of applications. To this end, the performance of an NB-IoT network are assessed considering a UABS following predefined trajectories. Then, machine learning algorithms based on reinforcement learning and meta-learning are considered to optimize the trajectory as well as the radio resource management techniques the UABS may rely on in order to provide service considering both static (IoT sensors) and dynamic (vehicles) users. Finally, some experimental projects based on the technologies mentioned so far are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Massive Internet of Things is expected to play a crucial role in Beyond 5G (B5G) wireless communication systems, offering seamless connectivity among heterogeneous devices without human intervention. However, the exponential proliferation of smart devices and IoT networks, relying solely on terrestrial networks, may not fully meet the demanding IoT requirements in terms of bandwidth and connectivity, especially in areas where terrestrial infrastructures are not economically viable. To unleash the full potential of 5G and B5G networks and enable seamless connectivity everywhere, the 3GPP envisions the integration of Non-Terrestrial Networks (NTNs) into the terrestrial ones starting from Release 17. However, this integration process requires modifications to the 5G standard to ensure reliable communications despite typical satellite channel impairments. In this framework, this thesis aims at proposing techniques at the Physical and Medium Access Control layers that require minimal adaptations in the current NB-IoT standard via NTN. Thus, firstly the satellite impairments are evaluated and, then, a detailed link budget analysis is provided. Following, analyses at the link and the system levels are conducted. In the former case, a novel algorithm leveraging time-frequency analysis is proposed to detect orthogonal preambles and estimate the signals’ arrival time. Besides, the effects of collisions on the detection probability and Bit Error Rate are investigated and Non-Orthogonal Multiple Access approaches are proposed in the random access and data phases. The system analysis evaluates the performance of random access in case of congestion. Various access parameters are tested in different satellite scenarios, and the performance is measured in terms of access probability and time required to complete the procedure. Finally, a heuristic algorithm is proposed to jointly design the access and data phases, determining the number of satellite passages, the Random Access Periodicity, and the number of uplink repetitions that maximize the system's spectral efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software Defined Networking along with Network Function Virtualisation have brought an evolution in the telecommunications laying out the bases for 5G networks and its softwarisation. The separation between the data plane and the control plane, along with having a decentralisation of the latter, have allowed to have a better scalability and reliability while reducing the latency. A lot of effort has been put into creating a distributed controller, but most of the solutions provided by now have a monolithic approach that reduces the benefits of having a software defined network. Disaggregating the controller and handling it as microservices is the solution to problems faced when working with a monolithic approach. Microservices enable the cloud native approach which is essential to benefit from the architecture of the 5G Core defined by the 3GPP standards development organisation. Applying the concept of NFV allows to have a softwarised version of the entire network structure. The expectation is that the 5G Core will be deployed on an orchestrated cloud infrastructure and in this thesis work we aim to provide an application of this concept by using Kubernetes as an implementation of the MANO standard. This means Kubernetes acts as a Network Function Virtualisation Orchestrator (NFVO), Virtualised Network Function Manager (VNFM) and Virtualised Infrastructure Manager (VIM) rather than just a Network Function Virtualisation Infrastructure. While OSM has been adopted for this purpose in various scenarios, this work proposes Kubernetes opposed to OSM as the MANO standard implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis is focused on introducing basic MIMO-based and Massive MIMO-based systems and their possible benefits. Then going through the implementation options that we have, according to 3GPP standards, for 5G systems and how the transition is done from a non-standalone 5G RAN to a completely standalone 5G RAN. Having introduced the above-mentioned subjects and providing some definition of telecommunications principles, we move forward to a more technical analysis of the Capacity, Throughput, Power consumption, and Costs. Comparing all the mentioned parameters between a Massive-MIMO-based system and a MIMO-based system. In the analysis of power consumption and costs, we also introduce the concept of virtualization and its benefits in terms of both power and costs. Finally, we try to justify a trade-off between having a more reliable system with a high capacity and throughput while keeping the costs as low as possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Internet of Things (IoT) is a critical pillar in the digital transformation because it enables interaction with the physical world through remote sensing and actuation. Owing to the advancements in wireless technology, we now have the opportunity of using their features to the best of our abilities and improve over the current situation. Indeed, the Internet of Things market is expanding at an exponential rate, with devices such as alarms and detectors, smart metres, trackers, and wearables being used on a global scale for automotive and agriculture, environment monitoring, infrastructure surveillance and management, healthcare, energy and utilities, logistics, good tracking, and so on. The Third Generation Partnership Project (3GPP) acknowledged the importance of IoT by introducing new features to support it. In particular, in Rel.13, the 3GPP introduced the so-called IoT to support Low Power Wide Area Networks (LPWAN).As these devices will be distributed in areas where terrestrial networks are not feasible or commercially viable, satellite networks will play a complementary role due to their ability to provide global connectivity via their large footprint size and short service deployment time. In this context, the goal of this thesis is to investigate the viability of integrating IoT technology with satellite communication (SatCom) systems, with a focus on the Random Access(RA) Procedure. Indeed, the RA is the most critical procedure because it allows the UE to achieve uplink synchronisation, obtain the permanent ID, and obtain uplink transmission resources. The goal of this thesis is to evaluate preamble detection in the SatCom environment.