956 resultados para 3D object recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a novel system and a control strategy for visual following of a 3D moving object by an Unmanned Aerial Vehicle UAV. The presented strategy is based only on the visual information given by an adaptive tracking method based on the color information, which jointly with the dynamics of a camera fixed to a rotary wind UAV are used to develop an Image-based visual servoing IBVS system. This system is focused on continuously following a 3D moving target object, maintaining it with a fixed distance and centered on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature vectors can be anything from simple surface normals to more complex feature descriptors. Feature extraction is important to solve various computer vision problems: e.g. registration, object recognition and scene understanding. Most of these techniques cannot be computed online due to their complexity and the context where they are applied. Therefore, computing these features in real-time for many points in the scene is impossible. In this work, a hardware-based implementation of 3D feature extraction and 3D object recognition is proposed to accelerate these methods and therefore the entire pipeline of RGBD based computer vision systems where such features are typically used. The use of a GPU as a general purpose processor can achieve considerable speed-ups compared with a CPU implementation. In this work, advantageous results are obtained using the GPU to accelerate the computation of a 3D descriptor based on the calculation of 3D semi-local surface patches of partial views. This allows descriptor computation at several points of a scene in real-time. Benefits of the accelerated descriptor have been demonstrated in object recognition tasks. Source code will be made publicly available as contribution to the Open Source Point Cloud Library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a study and analysis of surface normal-base descriptors for 3D object recognition. Specifically, we evaluate the behaviour of descriptors in the recognition process using virtual models of objects created from CAD software. Later, we test them in real scenes using synthetic objects created with a 3D printer from the virtual models. In both cases, the same virtual models are used on the matching process to find similarity. The difference between both experiments is in the type of views used in the tests. Our analysis evaluates three subjects: the effectiveness of 3D descriptors depending on the viewpoint of camera, the geometry complexity of the model and the runtime used to do the recognition process and the success rate to recognize a view of object among the models saved in the database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial generalization skills in school children aged 8-16 were studied with regard to unfamiliar objects that had been previously learned in a cross-modal priming and learning paradigm. We observed a developmental dissociation with younger children recognizing objects only from previously learnt perspectives whereas older children generalized acquired object knowledge to new viewpoints as well. Haptic and - to a lesser extent - visual priming improved spatial generalization in all but the youngest children. The data supports the idea of dissociable, view-dependent and view-invariant object representations with different developmental trajectories that are subject to modulatory effects of priming. Late-developing areas in the parietal or the prefrontal cortex may account for the retarded onset of view-invariant object recognition. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that the deleterious effect of contrast reversal on visual recognition is unique to faces, not objects. Here we show from priming, supervised category learning, and generalization that there is no such thing as general invariance of recognition of non-face objects against contrast reversal and, likewise, changes in direction of illumination. However, when recognition varies with rendering conditions, invariance may be restored, and effects of continuous learning may be reduced, by providing prior object knowledge from active sensation. Our findings suggest that the degree of contrast invariance achieved reflects functional characteristics of object representations learned in a task-dependent fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three experiments assessed the development of children's part and configural (part-relational) processing in object recognition during adolescence. In total, 312 school children aged 7-16 years and 80 adults were tested in 3-alternative forced choice (3-AFC) tasks. They judged the correct appearance of upright and inverted presented familiar animals, artifacts, and newly learned multipart objects, which had been manipulated either in terms of individual parts or part relations. Manipulation of part relations was constrained to either metric (animals, artifacts, and multipart objects) or categorical (multipart objects only) changes. For animals and artifacts, even the youngest children were close to adult levels for the correct recognition of an individual part change. By contrast, it was not until 11-12 years of age that they achieved similar levels of performance with regard to altered metric part relations. For the newly learned multipart objects, performance was equivalent throughout the tested age range for upright presented stimuli in the case of categorical part-specific and part-relational changes. In the case of metric manipulations, the results confirmed the data pattern observed for animals and artifacts. Together, the results provide converging evidence, with studies of face recognition, for a surprisingly late consolidation of configural-metric relative to part-based object recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Previous research has shown that object recognition may develop well into late childhood and adolescence. The present study extends that research and reveals novel differences in holistic and analytic recognition performance in 7-12 year olds compared to that seen in adults. We interpret our data within a hybrid model of object recognition that proposes two parallel routes for recognition (analytic vs. holistic) modulated by attention. Methodology / Principal Findings. Using a repetition-priming paradigm, we found in Experiment 1 that children showed no holistic priming, but only analytic priming. Given that holistic priming might be thought to be more ‘primitive’, we confirmed in Experiment 2 that our surprising finding was not because children’s analytic recognition was merely a result of name repetition. Conclusions / Significance. Our results suggest a developmental primacy of analytic object recognition. By contrast, holistic object recognition skills appear to emerge with a much more protracted trajectory extending into late adolescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four experiments with unfamiliar objects examined the remarkably late consolidation of part-relational relative to part-based object recognition (Jüttner, Wakui, Petters, Kaur, & Davidoff, 2013). Our results indicate a particularly protracted developmental trajectory for the processing of metric part relations. Schoolchildren aged 7 to 14 years and adults were tested in 3-Alternative-Forced-Choice tasks to judge the correct appearance of upright and inverted newly learned multipart objects that had been manipulated in terms of individual parts or part relations. Experiment 1 showed that even the youngest tested children were close to adult levels of performance for recognizing categorical changes of individual parts and relative part position. By contrast, Experiment 2 demonstrated that performance for detecting metric changes of relative part position was distinctly reduced in young children compared with recognizing metric changes of individual parts, and did not approach the latter until 11 to 12 years. A similar developmental dissociation was observed in Experiment 3, which contrasted the detection of metric relative-size changes and metric part changes. Experiment 4 showed that manipulations of metric size that were perceived as part (rather than part-relational) changes eliminated this dissociation. Implications for theories of object recognition and similarities to the development of face perception are discussed. © 2014 American Psychological Association.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental studies have shown that development towards adult performance levels in configural processing in object recognition is delayed through middle childhood. Whilst partchanges to animal and artefact stimuli are processed with similar to adult levels of accuracy from 7 years of age, relative size changes to stimuli result in a significant decrease in relative performance for participants aged between 7 and 10. Two sets of computational experiments were run using the JIM3 artificial neural network with adult and 'immature' versions to simulate these results. One set progressively decreased the number of neurons involved in the representation of view-independent metric relations within multi-geon objects. A second set of computational experiments involved decreasing the number of neurons that represent view-dependent (nonrelational) object attributes in JIM3's Surface Map. The simulation results which show the best qualitative match to empirical data occurred when artificial neurons representing metric-precision relations were entirely eliminated. These results therefore provide further evidence for the late development of relational processing in object recognition and suggest that children in middle childhood may recognise objects without forming structural description representations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features. © 2012 ICPR Org Committee.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous research (e.g., Jüttner et al, 2013, Developmental Psychology, 49, 161-176) has shown that object recognition may develop well into late childhood and adolescence. The present study extends that research and reveals novel di erences in holistic and analytic recognition performance in 7-11 year olds compared to that seen in adults. We interpret our data within Hummel’s hybrid model of object recognition (Hummel, 2001, Visual Cognition, 8, 489-517) that proposes two parallel routes for recognition (analytic vs. holistic) modulated by attention. Using a repetition-priming paradigm, we found in Experiment 1 that children showed no holistic priming, but only analytic priming. Given that holistic priming might be thought to be more ‘primitive’, we confirmed in Experiment 2 that our surprising finding was not because children’s analytic recognition was merely a result of name repetition. Our results suggest a developmental primacy of analytic object recognition. By contrast, holistic object recognition skills appear to emerge with a much more protracted trajectory extending into late adolescence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction.