960 resultados para 3D laser scanner photogrammetry
Resumo:
In this paper we present the methodological procedures involved in the digital imaging in mesoscale of a block of travertines rock of quaternary age, originating from the city of Acquasanta, located in the Apennines, Italy. This rocky block, called T-Block, was stored in the courtyard of the Laboratório Experimental Petróleo "Kelsen Valente" (LabPetro), of Universidade Estadual de Campinas (UNICAMP), so that from it were performed Scientific studies, mainly for research groups universities and research centers working in brazilian areas of reservoir characterization and 3D digital imaging. The purpose of this work is the development of a Model Solid Digital, from the use of non-invasive techniques of digital 3D imaging of internal and external surfaces of the T-Block. For the imaging of the external surfaces technology has been used LIDAR (Light Detection and Range) and the imaging surface Interior was done using Ground Penetrating Radar (GPR), moreover, profiles were obtained with a Gamma Ray Gamae-spectômetro laptop. The goal of 3D digital imaging involved the identification and parameterization of surface geological and sedimentary facies that could represent heterogeneities depositional mesoscale, based on study of a block rocky with dimensions of approximately 1.60 m x 1.60 m x 2.70 m. The data acquired by means of terrestrial laser scanner made available georeferenced spatial information of the surface of the block (X, Y, Z), and varying the intensity values of the return laser beam and high resolution RGB data (3 mm x 3 mm), total points acquired 28,505,106. This information was used as an aid in the interpretation of radargrams and are ready to be displayed in rooms virtual reality. With the GPR was obtained 15 profiles of 2.3 m and 2 3D grids, each with 24 sections horizontal of 1.3 and 14 m vertical sections of 2.3 m, both the Antenna 900 MHz to about 2600 MHz antenna. Finally, the use of GPR associated with Laser Scanner enabled the identification and 3D mapping of 3 different radarfácies which were correlated with three sedimentary facies as had been defined at the outset. The 6 profiles showed gamma a low amplitude variation in the values of radioactivity. This is likely due to the fact of the sedimentary layers profiled have the same mineralogical composition, being composed by carbonate sediments, with no clay in siliciclastic pellitic layers or other mineral carrier elements radioactive
Resumo:
In this paper a photogrammetric method is proposed for refining 3D building roof contours extracted from airborne laser scanning data. It is assumed that laser-derived planar faces of roofs are potentially accurate, while laser-derived building roof contours are not well defined. First, polygons representing building roof contours are extracted from a high-resolution aerial image. In the sequence, straight-line segments delimitating each building roof polygon are projected onto the corresponding laser-derived roof planes by using a new line-based photogrammetric model. Finally, refined 3D building roof contours are reconstructed by connecting every pair of photogrammetrically- projected adjacent straight lines. The obtained results showed that the proposed approach worked properly, meaning that the integration of image data and laser scanning data allows better results to be obtained, when compared to the results generated by using only laser scanning data. © 2013 IEEE.
Resumo:
Coastal sand dunes represent a richness first of all in terms of defense from the sea storms waves and the saltwater ingression; moreover these morphological elements constitute an unique ecosystem of transition between the sea and the land environment. The research about dune system is a strong part of the coastal sciences, since the last century. Nowadays this branch have assumed even more importance for two reasons: on one side the born of brand new technologies, especially related to the Remote Sensing, have increased the researcher possibilities; on the other side the intense urbanization of these days have strongly limited the dune possibilities of development and fragmented what was remaining from the last century. This is particularly true in the Ravenna area, where the industrialization united to the touristic economy and an intense subsidence, have left only few dune ridges residual still active. In this work three different foredune ridges, along the Ravenna coast, have been studied with Laser Scanner technology. This research didn’t limit to analyze volume or spatial difference, but try also to find new ways and new features to monitor this environment. Moreover the author planned a series of test to validate data from Terrestrial Laser Scanner (TLS), with the additional aim of finalize a methodology to test 3D survey accuracy. Data acquired by TLS were then applied on one hand to test some brand new applications, such as Digital Shore Line Analysis System (DSAS) and Computational Fluid Dynamics (CFD), to prove their efficacy in this field; on the other hand the author used TLS data to find any correlation with meteorological indexes (Forcing Factors), linked to sea and wind (Fryberger's method) applying statistical tools, such as the Principal Component Analysis (PCA).
Resumo:
The analysis and reconstruction of forensically relevant events, such as traffic accidents, criminal assaults and homicides are based on external and internal morphological findings of the injured or deceased person. For this approach high-tech methods are gaining increasing importance in forensic investigations. The non-contact optical 3D digitising system GOM ATOS is applied as a suitable tool for whole body surface and wound documentation and analysis in order to identify injury-causing instruments and to reconstruct the course of event. In addition to the surface documentation, cross-sectional imaging methods deliver medical internal findings of the body. These 3D data are fused into a whole body model of the deceased. Additional to the findings of the bodies, the injury inflicting instruments and incident scene is documented in 3D. The 3D data of the incident scene, generated by 3D laser scanning and photogrammetry, is also included into the reconstruction. Two cases illustrate the methods. In the fist case a man was shot in his bedroom and the main question was, if the offender shot the man intentionally or accidentally, as he declared. In the second case a woman was hit by a car, driving backwards into a garage. It was unclear if the driver drove backwards once or twice, which would indicate that he willingly injured and killed the woman. With this work, we demonstrate how 3D documentation, data merging and animation enable to answer reconstructive questions regarding the dynamic development of patterned injuries, and how this leads to a real data based reconstruction of the course of event.
Resumo:
Laser scanning is a terrestrial laser-imaging system that creates highly accurate three-dimensional images of objects for use in standard computer-aided design software packages. This report describes results of a pilot study to investigate the use of laser scanning for transportation applications in Iowa. After an initial training period on the use of the scanner and Cyclone software, pilot tests were performed on the following projects: intersection and railroad bridge for training purposes; section of highway to determine elevation accuracy and pair of bridges to determine level of detail that can be captured; new concrete pavement to determine smoothness; bridge beams to determine camber for deck-loading calculations; stockpile to determine volume; and borrow pit to determine volume. Results show that it is possible to obtain 2-6 mm precision with the laser scanner as claimed by the manufacturer compared to approximately one-inch precision with aerial photogrammetry using a helicopter. A cost comparison between helicopter photogrammetry and laser scanning showed that laser scanning was approximately 30 percent higher in cost depending on assumptions. Laser scanning can become more competitive to helicopter photogrammetry by elevating the scanner on a boom truck and capturing both sides of a divided roadway at the same time. Two- and three-dimensional drawings were created in MicroStation for one of the scanned highway bridges. It was demonstrated that it is possible to create such drawings within the accuracy of this technology. It was discovered that a significant amount of time is necessary to convert point cloud images into drawings. As this technology matures, this task should become less time consuming. It appears that laser scanning technology does indeed have a place in the Iowa Department of Transportation design and construction toolbox. Based on results from this study, laser scanning can be used cost effectively for preliminary surveys to develop TIN meshes of roadway surfaces. It also appears that this technique can be used quite effectively to measure bridge beam camber in a safer and quicker fashion compared to conventional approaches. Volume calculations are also possible using laser scanning. It seems that measuring quantities of rock could be an area where this technology would be quite beneficial since accuracy is more important with this material compared to soil. Other applications for laser scanning could include developing as-built drawings of historical structures such as the bridges of Madison County. This technology could also be useful where safety is a concern such as accurately measuring the surface of a highway active with traffic or scanning the underside of a bridge damaged by a truck. It is recommended that the Iowa Department of Transportation initially rent the scanner when it is needed and purchase the software. With time, it may be cost justifiable to purchase the scanner as well. Laser scanning consultants can be hired as well but at a higher cost.
Resumo:
La tesi tratta la ricerca di procedure che permettano di rilevare oggetti utilizzando il maggior numero di informazioni geometriche ottenibili da una nuvola di punti densa generata da un rilievo fotogrammetrico o da TLS realizzando un modello 3D importabile in ambiente FEM. Il primo test si è eseguito su una piccola struttura, 1.2x0.5x0.2m, in modo da definire delle procedure di analisi ripetibili; la prima consente di passare dalla nuvola di punti “Cloud” all’oggetto solido “Solid” al modello agli elementi finiti “Fem” e per questo motivo è stata chiamata “metodo CSF”, mentre la seconda, che prevede di realizzare il modello della struttura con un software BIM è stata chiamata semplicemente “metodo BIM”. Una volta dimostrata la fattibilità della procedura la si è validata adottando come oggetto di studio un monumento storico di grandi dimensioni, l’Arco di Augusto di Rimini, confrontando i risultati ottenuti con quelli di altre tesi sulla medesima struttura, in particolare si è fatto riferimento a modelli FEM 2D e a modelli ottenuti da una nuvola di punti con i metodi CAD e con un software scientifico sviluppato al DICAM Cloud2FEM. Sull’arco sono state eseguite due tipi di analisi, una lineare sotto peso proprio e una modale ottenendo risultati compatibili tra i vari metodi sia dal punto di vista degli spostamenti, 0.1-0.2mm, che delle frequenze naturali ma si osserva che le frequenze naturali del modello BIM sono più simili a quelle dei modelli generati da cloud rispetto al modello CAD. Il quarto modo di vibrare invece presenta differenze maggiori. Il confronto con le frequenze naturali del modello FEM ha restituito differenze percentuali maggiori dovute alla natura 2D del modello e all’assenza della muratura limitrofa. Si sono confrontate le tensioni normali dei modelli CSF e BIM con quelle ottenute dal modello FEM ottenendo differenze inferiori a 1.28 kg/cm2 per le tensioni normali verticali e sull’ordine 10-2 kg/cm2 per quelle orizzontali.
Resumo:
In this paper we describe the development of a three-dimensional (3D) imaging system for a 3500 tonne mining machine (dragline).Draglines are large walking cranes used for removing the dirt that covers a coal seam. Our group has been developing a dragline swing automation system since 1994. The system so far has been `blind' to its external environment. The work presented in this paper attempts to give the dragline an ability to sense its surroundings. A 3D digital terrain map (DTM) is created from data obtained from a two-dimensional laser scanner while the dragline swings. Experimental data from an operational dragline are presented.
Resumo:
The ability to build high-fidelity 3D representations of the environment from sensor data is critical for autonomous robots. Multi-sensor data fusion allows for more complete and accurate representations. Furthermore, using distinct sensing modalities (i.e. sensors using a different physical process and/or operating at different electromagnetic frequencies) usually leads to more reliable perception, especially in challenging environments, as modalities may complement each other. However, they may react differently to certain materials or environmental conditions, leading to catastrophic fusion. In this paper, we propose a new method to reliably fuse data from multiple sensing modalities, including in situations where they detect different targets. We first compute distinct continuous surface representations for each sensing modality, with uncertainty, using Gaussian Process Implicit Surfaces (GPIS). Second, we perform a local consistency test between these representations, to separate consistent data (i.e. data corresponding to the detection of the same target by the sensors) from inconsistent data. The consistent data can then be fused together, using another GPIS process, and the rest of the data can be combined as appropriate. The approach is first validated using synthetic data. We then demonstrate its benefit using a mobile robot, equipped with a laser scanner and a radar, which operates in an outdoor environment in the presence of large clouds of airborne dust and smoke.
Resumo:
This paper presents an enhanced algorithm for matching laser scan maps using histogram correlations. The histogram representation effectively summarizes a map's salient features such that pairs of maps can be matched efficiently without any prior guess as to their alignment. The histogram matching algorithm has been enhanced in order to work well in outdoor unstructured environments by using entropy metrics, weighted histograms and proper thresholding of quality metrics. Thus our large-scale scan-matching SLAM implementation has a vastly improved ability to close large loops in real-time even when odometry is not available. Our experimental results have demonstrated a successful mapping of the largest area ever mapped to date using only a single laser scanner. We also demonstrate our ability to solve the lost robot problem by localizing a robot to a previously built map without any prior initialization.
Resumo:
This paper discusses a number of key issues for the development of robust obstacle detection systems for autonomous mining vehicles. Strategies for obstacle detection are described and an overview of the state-of-the-art in obstacle detection for outdoor autonomous vehicles using lasers is presented, with their applicability to the mining environment noted. The development of an obstacle detection system for a mining vehicle is then detailed. This system uses a 2D laser scanner as the prime sensor and combines dead-reckoning data with laser data to create local terrain maps. The slope of the terrain maps is then used to detect potential obstacles.
Resumo:
[EN] Data contained in this record come from the following accademic activity (from which it is possible to locate additional records related with the Monastery):
Resumo:
[EN] This academic activity has been the origin of other work that are also located in this repository. The first one is the dataset of information about the geometry of the Monastery recorded during the two years of fieldwork, then some bachelor thesis and papers are listed:
Resumo:
[ES] La documentación de este proyecto ha servido como base para la realización de los siguientes proyectos y artículos:
Resumo:
This paper presents a short history of the appraisal of laser scanner technologies in geosciences used for imaging relief by high-resolution digital elevation models (HRDEMs) or 3D models. A general overview of light detection and ranging (LIDAR) techniques applied to landslides is given, followed by a review of different applications of LIDAR for landslide, rockfall and debris-flow. These applications are classified as: (1) Detection and characterization of mass movements; (2) Hazard assessment and susceptibility mapping; (3) Modelling; (4) Monitoring. This review emphasizes how LIDARderived HRDEMs can be used to investigate any type of landslides. It is clear that such HRDEMs are not yet a common tool for landslides investigations, but this technique has opened new domains of applications that still have to be developed.