982 resultados para 332.224
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Abstract. To date, terrestrial archives of long-term climatic change within the Arctic have widely been restricted to ice cores from Greenland and, more recently, sediments from Lake El’gygytgyn in northeast Arctic Russia. Sediments from this lake contain a paleoclimate record of glacialinterglacial cycles during the last three million years. Lowresolution studies at this lake have suggested that changes observed during Transition IV (the transition from marine isotope stage (MIS) 10 to MIS 9) are of greater amplitude than any observed since. In this study, geochemical parameters are used to infer past climatic conditions thus providing the first high-resolution analyses of Transition IV from a terrestrial Arctic setting. These results demonstrate that a significant shift in climate was subsequently followed by a rapid increase in biogenic silica (BSi) production. Following this sharp increase, bioproductivity remained high, but variable, for over a thousand years. This study reveals differences in the timing and magnitude of change within the ratio of silica to titanium (Si/Ti) and BSi records that would not be apparent in lower resolution studies. This has significant implications for the increasingly common use of Si/Ti data as an alternative to traditional BSi measurements.
Resumo:
Boberach: Das Ergebnis der Ermittlungen gegen 401 Teilnehmer am pfälzischen Aufstand, von denen 28 außer Verfolgung gesetzt wurden, enthält eine mit Zitaten belegte Darstellung der Ereignisse in den einzelnen Landesteilen; unter den Angeklagten sind Heinrich Didier, Karl Wilhelm Schmidt, Nikolaus Schmitt, Dr. Philipp Hepp, Peter Fries, August Culmann, Friedrich Schüler, Martini [sic!] (MdNV), Hans Alfred Erbe (MdNV), Schlöffel, Ferd. Fenner v. Fenneberg, Franz Zitz, Paquillier [sic!], Ludwig Blenker, Gottfried Kinkel, Johann [sic!] Kudlich, Franz Grün, Gustav Struve, Karl d'Ester, Friedrich Anneke [sic!], Friedrich v. Beust, Reinhard Schimmelpfennig, Franz Sznayda [sic!], August Willich, Ludwig Mieroslawsky, Victor Schily
Resumo:
1 Brief von Max Horkheimer an Rosel Favez, 03.12.1935; 5 Briefe zwischen Sidney B. Fay von der Bureau of International Search Cambridge, Massachusetts und Max Horkheimer, 1939-1941; 1 Brief von Max Horkheimer an James Feibleman, 02.03.1942; 5 Briefe von Hans Feibelmann an Max Horkheimer, 1936-1937; 2 Briefe zwischen Babette Feigenbaum und Max Horkheimer, 29.04.1941, 05.05.1941; 1 Brief von Arthur Feiler an Max Horkheimer, 15.10.1939; 1 Brief von Max Horkheimer an Adolf Feitler, 03.01.1935; 3 Briefe zwischen Frederick V. Filed von dem American Council Institute of Pacific Relations und Max Horkheimer, 1937, 05.04.1937; 9 Briefe zwischen Thea Field, Lowell Field und Max Horkheimer, 1935-1941; 1 Brief von Max Horkheimer an Finkelstein, 18.09.1941; 7 Briefe zwischen Harry Finkelstein und Max Horkheimer, 1936-1940; 1 Brief von Louis Finkelstein an Robert MacIver, 29.05.1940; 2 Briefe zwischen Louis Finkelstein und Max Horkheimer, 06.06.1940, 04.06.1940; 15 Briefe zwischen Hugo Fischer und Max Horkheimer, 1937-1938; 1 Brief von Hugo Fischer an P. Tillich; 1 Brief von Hugo Fischer an Karl A. Wittfogel, 17.06.1940; 2 Briefe von Max Horkheimer an Ernest Manheim, April 1942; 1 Brief von Alexander Farquharson an Max Horkheimer, 20.01.1940; 3 Briefe zwischen dem Institute of International Education, New York Edgar J. Fisher und Max Horkheimer, Oktober 1938, 18.10.1938; 10 Briefe zwischen Paul Fischer und Max Horkheimer, 1938-1940; 2 Briefe zwischen der Hessian Hills School New York und Max Horkheimer, 21.02.1938, 28.02.1938; 2 Briefe zwischen Dorothy Canfield Fisher und Max Horkheimer, 24.01.1939, 19.01.1939; 1 Brief von Ossip K. Flechtheim an Max Horkheimer, 04.01.1941; 2 Briefe zwischen der University of Minnesota, Minneapolis und Max Horkheimer, 02.08.1945, 15.09.1945; 3 Briefe zwischen Leo Löwenthal und Max Horkheimer, 1943-1945, 17.08.1945; 2 Briefe zwischen der University of Denver, Colorado und Max Horkheimer, 11.05.1943, 28.05.1943; 1 Brief von dem Institute Universitaire De Hautes Etudes Internationales Genf an Max Horkheimer, 25.01.1939; 1 Brief von Hans Kelsen an Max Horkheimer, 30.01.1939; Lebenslauf und 2 Empfehlungsschreiben von Max Fleischmann für Prof. Edwin Borchard; 1 Brief von der Columbia University in the City of New York an Franz Neumann, 17.04.1940; 3 Briefe zwischen Philipp Flesch und Max Horkheimer, 26.03.1940, 1939-1940; 17 Briefe zwischen Babette Fletcher, Theo Fletcher und Max Horkheimer, 1941-1950; 1 Brief von Max Horkheimer an Abraham Flexner, 07.06.1939; 1 Brief von Robert Fließ an Max Horkheimer, 24.10.1938; 1 Brief von der Foreign Policy Association New York an Max Horkheimer, 03.11.1934; 1 Brief von Max Horkheimer an Rudolf Forster, 10.01.1940; 2 Briefe von der Fortune Time & Life Building New York und Max Horkheimer, 1938-1940; 4 Briefe zwischen Siegmund H. Foulkes (Fuchs) und Max Horkheimer, 1936-1937, 31.12.1936; 5 Briefe zwischen Elsie M. Foulstone und Max Horkheimer, 1941; 1 Brief von Mary Fox an Max Horkheimer, 09.12.1938; 5 Briefe zwischen Ernst Fraenkel und Max Horkheimer, 1936-1938; 1 Heiratsanzeige Liesl Frank; 7 Briefe zwischen Philipp Frank und Max Horkheimer, 1937-1939; 6 Briefe zwischen Lothar G. Frank und Max Horkheimer, 1941; 7 Briefe zwischen Felix Frankfurter und Max Horkheimer, 1937-1941; 2 Briefe zwischen Joseph Freeman und Max Horkheimer, 22.11.1944; 1 Brief von der Free Synagogue New York an Max Horkheimer, 14.11.1938; 2 Briefe zwsichen Benjamin Freilichmann und Max Horkheimer, 07.01.1939, 23.01.1939; 2 Briefe zwischen dem Frenkel Travel Service New York und Max Horkheimer, 21.02.1936, 23.02.1936; 2 Briefe zwischen Hugo Freund und Max Horkheimer, 14.11.1938, 18.11.1938; 2 Briefe zwischen Julius A. Jr. Freynick und Max Horkheimer, 11.09.1939, 18.09.1939;
Resumo:
u.a.: Arthur Schopenhauer; Ferdinand Laban;
Resumo:
u.a.: Angebot des Vergleichs des Handelshaus; Bankeinlagen; Finanzsituation des Handelshauses; Heinrich Burghart Abegg;
Resumo:
Über einen Patienten
Resumo:
1866: Flucht aus Frankfurt, Beschwerde wegen einer Rechnung
Resumo:
Das Blatt ist teilweise auf einem hebräischen Pergamentfragment montiert
Resumo:
169 Briefe zwischen Franz Neumann und Max Horkheimer; 4 Briefe von Franz Neumann an Frederick Pollock, 1937 - 1941; 7 Briefe zwischen Franz Neumann und Walter L. Dorn, 1941 - 1942; 2 Briefe zwischen Walter L. Dorn und Max Horkheimer, März 1943; 1 Brief von Tom an Franz Neumann, 09.09.1941; 1 Brief von Phillip C. Jessup an Franz Neumann, 22.08.1941; 1 Brief von Athur und Wicky Goldschmidt an Franz Neumann, 22.08.1941; 2 Briefe von Goodwin Watson an Franz Neumann, 1941; 1 Brief von Harold Lasswell an Franz Neumann, 07.07.1941; 2 Briefe von Eugene N. Anderson an Franz Neumann, 1941; 1 Brief von C. J. Friedrich an Franz Neumann, 18.06.1941; 1 Brief von Alfred E. Cohn an Max Horkheimer, 30.01.1941; 1 Brief von Alfred E. Cohn an Franz Neumann, 30.01.1941; 3 Briefe von Leo Löwenthal an Franz Neumann, 1940; 1 Brief von Thurman Arnold an Max Horkheimer, 21.12.1938; 2 Briefe zwischen Ernst Kahn und Franz Neumann, 1938; 1 Brief von Franz Neumann an Walter Socoloff, 21.06.1938; 1 Brief von Franz Neumann an Flegenheimer, 31.06.1935; 1 Brief von Anita [Schwester von Felix Weil] an Felix Weil, 24.08.1937; 2 Briefe zwischen Franz Neumann und C. D. Medley, 1935/1936; 7 Briefe zwischen The Emergency Committee in Aid of Displaced German Scholars (New York) und Max Horkheimer, 1936; 1 Brief von Max Horkheimer an Guerreo, 08.09.1936; 1 Brief (Abschrift) von der Columbia University (New York) an United States of America, Consul General (London), 05.03.1936; 1 Brief von Franz Neumann an Juliette Favez, 11.12.1935;