995 resultados para 306-U1314


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contient : 1° « Histoire de la royne Arthemise », de « NICOLAS HOUEL, Parisien », dédiée à Catherine de Médicis et ; 2° « Discours de l'excellence de la plate painture en l'antiquité », du même

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jornal elaborado pela Assessoria de Comunicação e Imprensa da Reitoria da UNESP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] Early and Mid-Pleistocene climate, ocean hydrography and ice sheet dynamics have been reconstructed using a high-resolution data set (planktonic and benthicδ18O time series, faunal-based sea surface temperature (SST) reconstructions and ice-rafted debris (IRD)) record from a high-deposition-rate sedimentary succession recovered at the Gardar Drift formation in the subpolar North Atlantic (Integrated Ocean Drilling Program Leg 306, Site U1314). Our sedimentary record spans from late in Marine Isotope Stage (MIS) 31 to MIS 19 (1069–779 ka). Different trends of the benthic and planktonic oxygen isotopes, SST and IRD records before and after MIS 25 (∼940 ka) evidence the large increase in Northern Hemisphere ice-volume, linked to the cyclicity change from the 41-kyr to the 100-kyr that occurred during the Mid-Pleistocene Transition (MPT). Beside longer glacial-interglacial (G-IG) variability, millennial-scale fluctuations were a pervasive feature across our study. Negative excursions in the benthicδ18O time series observed at the times of IRD events may be related to glacio-eustatic changes due to ice sheets retreats and/or to changes in deep hydrography. Time series analysis on surface water proxies (IRD, SST and planktonicδ18O) of the interval between MIS 31 to MIS 26 shows that the timing of these millennial-scale climate changes are related to half-precessional (10 kyr) components of the insolation forcing, which are interpreted as cross-equatorial heat transport toward high latitudes during both equinox insolation maxima at the equator.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Unbekannte) "Sache", Sitzungen in Berlin, Otto von Bismarck

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vorbesitzer: Dominikanerkloster Frankfurt am Main

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present further %CaCO3 data from Site U1313 across the Pliocene-Pleistocene intensification of Northern Hemisphere glaciation. This data was measured on the U1313 secondary splice. We also present tie points between the primary and secondary splice for this interval based on graphical tuning of L* (sediment lightness).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present Plio-Pleistocene records of sediment color, %CaCO3, foraminifer fragmentation, benthic carbon isotopes (d13C) and radiogenic isotopes (Sr, Nd, Pb) of the terrigenous component from IODP Site U1313, a reoccupation of benchmark subtropical North Atlantic Ocean DSDP Site 607. We show that (inter)glacial cycles in sediment color and %CaCO3 pre-date major northern hemisphere glaciation and are unambiguously and consistently correlated to benthic oxygen isotopes back to 3.3 million years ago (Ma) and intermittently so probably back to the Miocene/Pliocene boundary. We show these lithological cycles to be driven by enhanced glacial fluxes of terrigenous material (eolian dust), not carbonate dissolution (the classic interpretation). Our radiogenic isotope data indicate a North American source for this dust (~3.3-2.4 Ma) in keeping with the interpreted source of terrestrial plant wax-derived biomarkers deposited at Site U1313. Yet our data indicate a mid latitude provenance regardless of (inter)glacial state, a finding that is inconsistent with the biomarker-inferred importance of glaciogenic mechanisms of dust production and transport. Moreover, we find that the relation between the biomarker and lithogenic components of dust accumulation is distinctly non-linear. Both records show a jump in glacial rates of accumulation from Marine Isotope Stage, MIS, G6 (2.72 Ma) onwards but the amplitude of this signal is about 3-8 times greater for biomarkers than for dust and particularly extreme during MIS 100 (2.52 Ma). We conclude that North America shifted abruptly to a distinctly more arid glacial regime from MIS G6, but major shifts in glacial North American vegetation biomes and regional wind fields (exacerbated by the growth of a large Laurentide Ice Sheet during MIS 100) likely explain amplification of this signal in the biomarker records. Our findings are consistent with wetter-than-modern reconstructions of North American continental climate under the warm high CO2 conditions of the Early Pliocene but contrast with most model predictions for the response of the hydrological cycle to anthropogenic warming over the coming 50 years (poleward expansion of the subtropical dry zones).