1000 resultados para 24-Ethylcholest-5-en-3beta-ol per unit mass total organic carbon
Resumo:
Studies of spatial and temporal changes in modern and past sea-ice occurrence may help to understand the processes controlling the recent decrease in Arctic sea-ice cover. Here, we determined concentrations of IP25, a novel biomarker proxy for sea ice developed in recent years, phytoplankton-derived biomarkers (brassicasterol and dinosterol) and terrigenous biomarkers (campesterol and ß-sitosterol) in the surface sediments from the Kara and Laptev seas to estimate modern spatial (seasonal) sea-ice variability and organic-matter sources. C25-HBI dienes and trienes were determined as additional paleoenvironmental proxies in the study area. Furthermore, a combined phytoplankton-IP25 biomarker approach (PIP25 index) is used to reconstruct the modern sea-ice distribution more quantitatively. The terrigenous biomarkers reach maximum concentrations in the coastal zones and estuaries, reflecting the huge discharge by the major rivers Ob, Yenisei and Lena. Maxima in phytoplankton biomarkers indicating increased primary productivity were found in the seasonally ice-free central part of the Kara and Laptev seas. Neither IP25 nor PIP25, however, show a clear and simple correlation with satellite sea-ice distribution in our study area due to the complex environmental conditions in our study area and the transportation process of sea-ice diatom in the water column. Differences in the diene/IP25 and triene/IP25 ratios point to different sources of these HBIs and different environmental conditions. The diene/IP25 ratio seems to correlate positively with sea-surface temperature, while negatively with salinity distributions.
Resumo:
Records of the spatial and temporal variability of Arctic Ocean sea ice are of significance for understanding the causes of the dramatic decrease in Arctic sea-ice cover of recent years. In this context, the newly developed sea-ice proxy IP25, a mono-unsaturated highly branched isoprenoid alkene with 25 carbon atoms biosynthesized specifically by sea-ice associated diatoms and only found in Arctic and sub-Arctic marine sediments, has been used to reconstruct the recent spatial sea-ice distribution. The phytoplankton biomarkers 24S-brassicasterol and dinosterol were determined alongside IP25 to distinguish ice-free or permanent ice conditions, and to estimate the sea-ice conditions semi-quantitatively by means of the phytoplankton-IP25 index (PIP25). Within our study, for the first time a comprehensive data set of these biomarkers was produced using fresh and deep-frozen surface sediment samples from the Central Arctic Ocean proper (>80°N latitude) characterised by a permanent ice cover today and recently obtained surface sediment samples from the Chukchi Plateau/Basin partly covered by perennial sea ice. In addition, published and new data from other Arctic and sub-Arctic regions were added to generate overview distribution maps of IP25 and phytoplankton biomarkers across major parts of the modern Arctic Ocean. These comprehensive biomarker data indicate perennial sea-ice cover in the Central Arctic, ice-free conditions in the Barents Sea and variable sea-ice situations in other marginal seas. The low but more than zero values of biomarkers in the Central Arctic supported the low in-situ productivity there. The PIP25 index values reflect modern sea-ice conditions better than IP25 alone and show a positive correlation with spring/summer sea ice. When calculating and interpreting PIP25 index as a (semi-quantitative) proxy for reconstructions of present and past Arctic sea-ice conditions from different Arctic/sub-Arctic areas, information of the source of phytoplankton biomarkers and the possible presence of allochthonous biomarkers is needed, and the records of the individual biomarkers always should be considered as well.
Resumo:
Here, we present a first (low-resolution) biomarker sea-ice proxy record from the High Arctic (southern Lomonosov Ridge), going back in time to about 60 ka (MIS 3 to MIS 1). Variable concentrations of the sea-ice diatom specific highly branched isoprenoid (HBI) with 25 carbon atoms ("IP25"), in combination with the phytoplankton biomarker brassicasterol, suggest variable seasonal sea-ice coverage and open-water productivity during MIS 3. During most of MIS 2, the spring to summer sea-ice margin significantly extended towards the south, resulting in a drastic decrease in phytoplankton productivity. During the Early Holocene Climate Optimum, brassicasterol reached its maximum, interpreted as signal for elevated phytoplankton productivity due to a significantly reduced sea-ice cover. During the mid-late Holocene, IP25 increased and brassicasterol decreased, indicating extended sea-ice cover and reduced phytoplankton productivity, respectively. The HBI diene/IP25 ratios probably reached maximum values during the Bølling-Allerød warm period and decreased during the Holocene, suggesting a correlation with sea-surface temperature.
Resumo:
For the reconstruction of sea-ice variability, a biomarker approach which is based on (1) the determination of sea-ice diatom-specific highly-branched isoprenoid (IP25) and (2) the coupling of phytoplankton biomarkers and IP25 has been used. For the first time, such a data set was obtained from an array of two sediment traps deployed at the southern Lomonosov Ridge in the central Arctic Ocean at water depth of 150 m and 1550 m and recording the seasonal variability of sea ice cover in 1995/1996. These data indicate a predominantly permanent sea ice cover at the trap location between November 1995 and June 1996, an ice-edge situation with increased phytoplankton productivity and sea-ice algae input in July/August 1996, and the start of new-ice formation in late September. The record of modern sea-ice variability is then used to better interpret data from sediment core PS2458-4 recovered at the Laptev Sea continental slope close to the interception with Lomonosov Ridge and recording the post-glacial to Holocene change in sea-ice cover. Based on IP25 and phytoplankton biomarker data from Core PS2458-4, minimum sea-ice cover was reconstructed for the Bølling/Allerød warm interval between about 14.5 and 13 calendar kyr BP, followed by a rapid and distinct increase in sea-ice cover at about 12.8 calendar kyr BP. This sea-ice event was directly preceded by a dramatic freshwater event and a collapse of phytoplankton productivity, having started about 100 years earlier. These data are the first direct evidence that enhanced freshwater flux caused enhanced sea-ice formation in the Arctic at the beginning of the Younger Dryas. In combination with a contemporaneous, abrupt and very prominent freshwater/meltwater pulse in the Yermak Plateau/Fram Strait area these data may furthermore support the hypothesis that strongly enhanced freshwater (and ice) export from the Arctic into the North Atlantic could have played an important trigger role for the onset of the Younger Dryas cold reversal. During the Early Holocene, sea-ice cover steadily increased again (ice-edge situation), reaching modern sea-ice conditions (more or less permanent sea-ice cover) probably at about 7-8 calendar kyr BP.
Resumo:
Using the sea ice proxy IP25 and phytoplankton-derived biomarkers (brassicasterol and dinosterol) Arctic sea-ice conditions were reconstructed for Marine Isotope Stage (MIS) 3 to 1 in sediment cores from the north of Barents Sea continental margin across the Central Arctic to the Southern Mendeleev Ridge. Our results suggest more extensive sea-ice cover than present-day during MIS 3, increasing sea-ice growth during MIS 2 and decreased sea-ice cover during the last deglacial. The summer ice edge sustained north of the Barents Sea even during extremely cold (i.e., Last Glacial Maximum (LGM)) as well as warm periods (i.e., Bølling-Allerød). During the LGM, the western Svalbard margin and the northern Barents Sea margin areas were characterized by high concentrations of both IP25 and phytoplankton biomarkers, interpreted as a productive ice-edge situation, caused by the inflow of warm Atlantic Water. In contrast, the LGM high Arctic proper (north of 84°N) was covered by thick permanent sea ice throughout the year with rare break up, indicated by zero or near-zero biomarker concentrations. The spring/summer sea-ice margin significantly extended southwards to the southern Lomonosov Ridge and Mendeleev Ridge during the LGM. Our proxy reconstructions are very consistent with published model results based on the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM).