947 resultados para 2-Stage Light Gas Gun


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare the optical properties and device performance of unpackaged InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) emitting at ∼430 nm grown simultaneously on a high-cost small-size bulk semipolar (11 2 - 2) GaN substrate (Bulk-GaN) and a low-cost large-size (11 2 - 2) GaN template created on patterned (10 1 - 2) r-plane sapphire substrate (PSS-GaN). The Bulk-GaN substrate has the threading dislocation density (TDD) of ∼ and basal-plane stacking fault (BSF) density of 0 cm-1, while the PSS-GaN substrate has the TDD of ∼2 × 108cm-2 and BSF density of ∼1 × 103cm-1. Despite an enhanced light extraction efficiency, the LED grown on PSS-GaN has two-times lower internal quantum efficiency than the LED grown on Bulk-GaN as determined by photoluminescence measurements. The LED grown on PSS-GaN substrate also has about two-times lower output power compared to the LED grown on Bulk-GaN substrate. This lower output power was attributed to the higher TDD and BSF density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The note presents a method of constructing dynamic constitutive equations of material by means of Lagrange experiment and analysis. Tests were carried out by a light gas gun and the stress history profiles were recorded on multiple Lagrange positions. The dynamic constitutive equations were deduced from the regression of a series of data which was obtained by Lagrange analysis based upon recorded multiple stress histories. Here constitutive equations of glass fibre reinforced phenolic resin composite(GFRP) in uniaxil strain state under dynamic loading are given. The proposed equations of the material agree well with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleation of microdamage under dynamic loading was investigated through planar impact experiments accomplished with a light gas gun. The microscopic observation of recovered and sectioned specimens showed that microcracks were nucleated only by cracking of brittle particles inside material. However, for comparison the in situ static tensile tests on the same material conducted with a scanning electron microscope showed that the microcracks were nucleated by many forms those were fracture of ductile matrix, debonding particles from matrix and cracking of brittle particles. The quantitative metallographic observations of the specimens subjected to impact loading showed that most of the cracked particles were situated on grain boundaries of the aluminium matrix. These facts suggested the concept of critical size and incubation time of submicroscopic cavities in the dynamic case and the mechanism of embryo-damage induced nucleation by fracture of brittle particles in the aluminium alloy under impact loading was proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A void growth relations for ductile porous materials under intense dynamic general loading condition is presented. The mathematical model includes the influence of inertial effects, material rate sensitivity, as well as the contribution of void surface energy and material work-hardening. Numerical analysis shows that inertia appears to resist the growth of voids. The inertial effects increase quickly with the loading rates. The theoretical analysis suggests that the inertial effects cannot be neglected at high loading rates. Plate-impact tests of aluminum alloy are performed with light gas gun. The processes of dynamic damage in aluminum alloy are successfully simulated with a finite-difference dynamic code in which the theoretical model presented in this paper is incorporated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensitivity of combustion phasing and combustion descriptors to ignition timing, load and mixture quality on fuelling a multi-cylinder natural gas engine with bio-derived H-2 and CO rich syngas is addressed. While the descriptors for conventional fuels are well established and are in use for closed loop engine control, presence of H-2 in syngas potentially alters the mixture properties and hence combustion phasing, necessitating the current study. The ability of the descriptors to predict abnormal combustion, hitherto missing in the literature, is also addressed. Results from experiments using multi-cylinder engines and numerical studies using zero dimensional Wiebe function based simulation models are reported. For syngas with 20% H-2 and CO and 2% CH4 (producer gas), an ignition retard of 5 +/- 1 degrees was required compared to natural gas ignition timing to achieve peak load of 72.8 kWe. It is found that, for syngas, whose flammability limits are 0.42-1.93, the optimal engine operation was at an equivalence ratio of 1.12. The same methodology is extended to a two cylinder engine towards addressing the influence of syngas composition, especially H-2 fraction (varying from 13% to 37%), on the combustion phasing. The study confirms the utility of pressure trace derived combustion descriptors, except for the pressure trace first derivative, in describing the MBT operating condition of the engine when fuelled with an alternative fuel. Both experiments and analysis suggest most of the combustion descriptors to be independent of the engine load and mixture quality. A near linear relationship with ignition angle is observed. The general trend(s) of the combustion descriptors for syngas fuelled operation are similar to those of conventional fuels; the differences in sensitivity of the descriptors for syngas fuelled engine operation requires re-calibration of control logic for MBT conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient test facilities offer the potential for the simultaneous study of turbine aerodynamic performance, unsteady flow phenomena and the heat transfer characteristics of a turbine stage. This paper describes the development of aerodynamic performance measurement techniques in the Oxford Rotor Facility (ORF). The solutions to the technological issues involved with transient testing presented in this paper are expected to achieve levels of precision uncertainty comparable with traditional steady flow test rigs. The theoretical background to the measurement of aerodynamic performance is presented together with a comprehensive pre-test uncertainty analysis. The instrumentation scheme for the measurement of stage mass flow rate is discussed in detail, the measurements of shaft power, total inlet enthalpy, and stage pressure ratio are also outlined. The current working section features a 62% scale, 1-1/2 stage, high-pressure shroudless transonic turbine. The required inlet flow conditions are provided by an Isentropic Light Piston Tunnel (ILPT) with a quasi-steady state run time of approximately 70ms. The testing is conducted at engine representative specific speed, pressure ratio, gas-to-wall temperature ratio, Mach number and Reynolds number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naphthene is generally considered difficult to convert in traditional pyrolysis, but the ring rupture becomes fairly easy with the presence of oxygen in the gas phase oxidative cracking of the model compound, cyclohexane. About 86.8% conversion of cyclohexane, 43.7% yield of light alkenes, 6.6% yield of benzene and 14.3% yield of CO could be obtained at 750 degreesC, at which temperature the pyrolysis of cyclohexane was negligible, while at 850 degreesC, the total yield of alkenes, benzene and CO was as high as 80% (50%, 12% and 18%, respectively) with 98% conversion of cyclohexane. The gas phase oxidative cracking process could be run in an autothermal way (cyclohexane/O-2 mole ratio of 0.69-0.8 in theory), which would minimize energy consumption and capital costs of the whole process. CO prevailed in the produced CO, and the yield Of CO2 was always below 1%, which means about 90% Of CO2 emission by fuel burning in pyrolysis would be saved. The gas phase oxidative cracking process appears to be an environmentally benign and efficient route for light alkene production with naphthene rich feedstocks. (C) 2004 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The [Ru(phen)2(dppz)]2+ complex (1) is non-emissive in water but is highly luminescent in organic solvents or when bound to DNA, making it a useful probe for DNA binding. To date, a complete mechanistic explanation for this “light-switch” effect is still lacking. With this in mind we have undertaken an ultrafast time resolved infrared (TRIR) study of 1 and directly observe marker bands between 1280–1450 cm-1, which characterise both the emissive “bright” and the non-emissive “dark” excited states of the complex, in CD3CN and D2O respectively. These characteristic spectral features are present in the [Ru(dppz)3]2+ solvent light-switch complex but absent in [Ru(phen)3]2+, which is luminescent in both solvents. DFT calculations show that the vibrational modes responsible for these characteristic bands are predominantly localised on the dppz ligand. Moreover, they reveal that certain vibrational modes of the “dark” excited state couple with vibrational modes of two coordinating water molecules, and through these to the bulk solvent, thus providing a new insight into the mechanism of the light-switch effect. We also demonstrate that the marker bands for the “bright” state are observed for both L- and D enantiomers of 1 when bound to DNA and that photo-excitation of the complex induces perturbation of the guanine and cytosine carbonyl bands. This perturbation is shown to be stronger for the L enantiomer, demonstrating the different binding site properties of the two enantiomers and the ability of this technique to determine the identity and nature of the binding site of such intercalators.