990 resultados para 181-1123


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abundant and diverse polycystine radiolarian faunas from ODP Leg 181, Site 1123 (0-1.2 Ma at ~21 kyr resolution) and Site 1124 (0-0.6 Ma, ~5 kyr resolution, with a disconformity between 0.42-0.22 Ma) have been used to infer Pleistocene-Holocene paleoceanographic changes north of the Subtropical Front (STF), offshore eastern New Zealand, southwest Pacific. The abundance of warm-water taxa relative to cool-water taxa was used to determine a radiolarian paleotemperature index, the Subtropical (ST) Index. ST Index variations show strong covariance with benthic foraminifera oxygen isotope records from Site 1123 and exhibit similar patterns through Glacial-Interglacial (G-I) cycles of marine isotope stages (MIS) 15-1. At Site 1123, warm-water taxa peak in abundance during Interglacials (reaching ~8% of the total fauna). Within Glacials cool-water taxa increase to ~15% (MIS2) of the fauna. Changes in radiolarian assemblages at Site 1124 indicate similar but much better resolved trends through MIS15-12 and 7-1. Pronounced increases in warm-water taxa occur at the onset of Interglacials (reaching ~15% of the fauna), whereas the abundance of cool-water taxa increases in Glacials peaking in MIS2 (~17% of the fauna). Overall warmer conditions at Site 1124 during the last 600 kyrs indicate sustained influence of the subtropical, warm East Cape Current (ECC). During Interglacials radiolarian assemblages suggest an increase in marine productivity at both sites which might be due to predominance of micronutrient-rich Subtropical Water. At Site 1123, an increased abundance of deep-dwelling taxa in MIS 13 and 9 suggests enhanced vertical mixing. During Glacials, reduced vigour of ECC flow combined with northward expansion of cool, micronutrient-poor Subantarctic Water occurs. Only at Site 1123 there is evidence of a longitudinal shift of the STF, reaching as far north as 41°S.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Taupo Volcanic Zone (TVZ), in the North Island, New Zealand, is arguably the most active Quaternary rhyolitic system in the world. Numerous and widespread rhyolitic tephra layers, sourced from the TVZ, form valuable chronostratigraphic markers in onshore and offshore sedimentary sequences. In deep-sea cores from Ocean Drilling Program (ODP) Leg 181 Sites 1125, 1124, 1123 and 1122, located east of New Zealand, ca 100 tephra beds are recognised post-dating the Plio-Pleistocene boundary at 1.81 Ma. These tephras have been dated by a combination of magnetostratigraphy, orbitally tuned stable-isotope data and isothermal plateau fission track ages. The widespread occurrence of ash offshore to the east of New Zealand is favoured by the small size of New Zealand, the explosivity of the mainly plinian and ignimbritic eruptions and the prevailing westerly wind field. Although some tephras can be directly attributed to known TVZ eruptions, there are many more tephras represented within ODP-cores that have yet to be recognised in near-source on-land sequences. This is due to proximal source area erosion and/or deep burial as well as the adverse effect of vapour phase alteration and devitrification within near-source welded ignimbrites. Despite these difficulties, a number of key deep-sea tephras can be reliably correlated to equivalent-aged tephra exposed in uplifted marine back-arc successions of Wanganui Basin where an excellent chronology has been developed based on magnetostratigraphy, orbitally calibrated sedimentary cycles and isothermal plateau fission track ages on tephra. Significant Pleistocene tephra markers include: the Kawakawa, Omataroa, Rangitawa/Onepuhi, Kaukatea, Kidnappers-B, Potaka, Unit D/Ahuroa, Ongatiti, Rewa, Sub-Rewa, Pakihikura, Ototoka and Table Flat Tephras. Six other tephra layers are correlated between ODP-core sites but have yet to be recognised within onshore records. The identification of Pleistocene TVZ-sourced tephras within the ODP record, and their correlation to Wanganui Basin and other onshore sites is a significant advance as it provides: (1) an even more detailed history of the TVZ than can be currently achieved from the near-source record, (2) a high-resolution tephrochronologic framework for future onshore-offshore paleoenvironmental reconstructions, and (3) well-dated tephra beds correlated from the offshore ODP sites with astronomically tuned timescales provide an opportunity to critically evaluate the chronostratigraphic framework for onshore Plio-Pleistocene sedimentary sequences (e.g. Wanganui Basin, cf. Naish et al. (1998, doi:10.1016/S0277-3791(97)00075-9).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uniquely in the Southern Hemisphere the New Zealand micro-continent spans the interface between a subtropical gyre and the Subantarctic Circumpolar Current. Its 20° latitudinal extent includes a complex of submerged plateaux, ridges, saddles and basins which, in the present interglacial, are partial barriers to circulation and steer the Subtropical (STF) and Subantarctic (SAF) fronts. This configuration offers a singular opportunity to assess the influence of bottom topography on oceanic circulation through Pleistocene glacial - interglacial (G/I) cycles, its effect on the location and strength of the fronts, and its ability to generate significant differences in mixed layer thermal history over short distances. For this study we use new planktic foraminiferal based sea-surface temperature (SST) estimates spanning the past 1 million years from a latitudinal transect of four deep ocean drilling sites. We conclude that: 1. the effect of the New Zealand landmass was to deflect the water masses south around the bathymetric impediments; 2. the effect of a shallow submerged ridge on the down-current side (Chatham Rise), was to dynamically trap the STF along its crest, in stark contrast to the usual glacial-interglacial (G-I) meridional migration that occurs in the open ocean; 3. the effect of more deeply submerged, downstream plateaux (Campbell, Bounty) was to dynamically trap the SAF along its steep southeastern margin; 4. the effects of saddles across the submarine plateaux was to facilitate the development of jets of subtropical and subantarctic surface water through the fronts, forming localized downstream gyres or eddies during different phases in the G-I climate cycles; 5. the deep Pukaki Saddle across the Campbell-Bounty Plateaux guided a branch of the SAF to flow northwards during each glacial, to form a strong gyre of circumpolar surface water in the Bounty Trough, especially during the mid-Pleistocene Climate Transition (MIS 22-16) when exceptionally high SST gradients existed across the STF; 6. the shallower Mernoo Saddle, at the western end of the Chatham Rise, provided a conduit for subtropical water to jet southwards across the STF in the warmest interglacial peaks (MIS 11, 5.5) and for subantarctic water to flow northwards during glacials; 7. although subtropical or subantarctic drivers can prevail at a particular phase of a G-I cycles, it appears that the Antarctic Circumpolar Current is the main influence on the regional hydrography. Thus complex submarine topography can affect distinct differences in the climate records over short distances with implications for using such records in interpreting global or regional trends. Conversely, the local topography can amplify the paleoclimate record in different ways in different places, thus enhancing its value for the study of more minor paleoceanographic influences that elsewhere are more difficult to detect. Such sites include DSDP 594, which like some other Southern Ocean sites, has the typical late Pleistocene asymmetrical saw-tooth G-I climate pattern transformed to a gap-tooth pattern of quasi-symmetrical interglacial spikes that interrupt extended periods of minimum glacial temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biogenic opal concentrations were measured on bulk sediments recovered at Ocean Drilling Program Sites 1123, 1124, and 1125 off North Island of New Zealand in the southwest Pacific. Site 1124 showed opal contents ranging from approximately 2 to 8 wt%, which is relatively high compared to other sites. The subbottom maximum in biogenic opal content located between 1.0 and 1.5 m composite depth can be recognized at each site. Patterns of biogenic opal content in the uppermost parts of the cores appear to reflect the surface ocean settings relating to the migration of the Subtropical Convergence Zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seven sites were drilled off the eastern shore of New Zealand during Ocean Drilling Program Leg 181 to gain knowledge of southwest Pacific ocean history, in particular, the evolution of the Pacific Deep Western Boundary Current (DWBC). Holes 1123C and 1124C penetrated lower Oligocene to middle Eocene sediments containing moderately to poorly preserved calcareous nannofossils. Nannofossil assemblages show signs of dissolution and overgrowth, but key marker species can be identified. Nannofossil abundance ranges from abundant to barren. The lower Oligocene sediments are distinctly separated from the overlying Neogene sequences by the Marshall Paraconformity, a regional marker of environmental and sea level change. An age-depth model for Hole 1123C through this sequence was constructed using nine nannofossil age datums and three magnetostratigraphic datums. There is good agreement between the biostratigraphy and magnetostratigraphy, which indicates that the Marshall Paraconformity spans ~12 m.y. in Hole 1123C. The same sequence in Hole 1124C is disrupted by at least three hiatuses, complicating interpretation of the sedimentation history. The Marshall Paraconformity spans at least 3 m.y. in Hole 1124C. A 4- m.y. gap separates lower Oligocene and middle Eocene sediments, and a ~15 m.y. hiatus separates middle Eocene mudstones from middle Paleocene nannofossil-bearing mudstones. Nannofossil biostratigraphy from Holes 1123C and 1124C indicates that the Eocene-Oligocene transition was a time of fluctuating biota and intensification of the DWBC along the New Zealand margin.