993 resultados para 177-1094
Resumo:
Identifying terrigenous sources in deep-sea sediments may reveal temporal trends in paleocirculation and the relative role of eolian, upwelled, and hemipelagic Fe sources to surface waters. Bulk elemental and isotopic geochemistry of deep-sea sediments recovered during Ocean Drilling Program Leg 177 in the southeastern Atlantic sector of the Southern Ocean reveal several important aspects of paleocirculation and terrigenous provenance. The sites studied span 43°-53°S and represent different oceanographic settings relative to regional hydrography and sediment type. Bulk sediment geochemistry indicates that terrigenous provenance varied over the past 600 k.y. Site 1089, the northernmost site, exhibits clear glacial-interglacial variability in provenance, while provenance appears to vary regardless of climate state at the more southerly sites (Site 1093 and 1094). Nd and Sr isotopes and Sm/Nd ratios of the terrigenous fraction indicate that study sites have geochemically distinguishable provenance. Nd and Sr isotopes further suggest that Sites 1089 and 1094 both contain detrital components that originated in South America over the past 30 k.y.; however, Site 1089 is also influenced by southern African sources and the strength of the Agulhas Current. The e-Nd data support a more hemipelagic source for the terrigenous material rather than an eolian source based on comparisons with Antarctic ice core data and known sea-ice extent.
Resumo:
The interaction between biogenic silica export and burial, paleoceanography, diatom species succession and mats formation was examined based on relative abundances data of Plio/Pleistocene diatoms from six cores recovered during ODP Leg 177 on a transect across the Antarctic Circumpolar Current (ACC) in the Atlantic sector of the Southern Ocean. Fragilariopsis kerguelensis, Actinocyclus ingens and species of the genus Thalassiothrix were the main contributors to the diatom assemblages. Three main steps marked the development of the silica system in the Southern Ocean: Step 1 (at ca. 2.77 Ma), establishment of increased biogenic silica burial in the Antarctic Circumpolar Current area, following the large-scale oceanic reorganization connected to the increased northern hemisphere glaciation; Step 2 (at ca. 1.93 Ma), the Antarctic Polar Front becomes the main biogenic silica sink, diatom mats are widespread, and are also found slightly to the north and south of the APF; Step 3 (at ca. 0.63 Ma), with the strong drop in abundance (and later extinction at 0.38 Ma) of A. ingens and the rise to dominance of F. kerguelensis, the system enters a glacial-interglacial mode, with diatom mats occurring during interglacials at the APF and in the Antarctic Zone, but disappearing north of it.
Resumo:
Radiolarian cherts in the Tethyan realm of Jurassic age were recently interpreted as resulting from high biosiliceous productivity along upwelling zones in subequatorial paleolatitudes the locations of which were confirmed by revised paleomagnetic estimates. However, the widespread occurrence of cherts in the Eocene suggests that cherts may not always be reliable proxies of latitude and upwelling zones. In a new survey of the global spatio-temporal distribution of Cenozoic cherts in Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) sediment cores, we found that cherts occur most frequently in the Paleocene and early Eocene, with a peak in occurrences at ~50 Ma that is coincident with the time of highest bottom water temperatures of the early Eocene climatic optimum (EECO) when the global ocean was presumably characterized by reduced upwelling efficiency and biosiliceous productivity. Cherts occur less commonly during the subsequent Eocene global cooling trend. Primary paleoclimatic factors rather than secondary diagenetic processes seem therefore to control chert formation. This timing of peak Eocene chert occurrence, which is supported by detailed stratigraphic correlations, contradicts currently accepted models that involve an initial loading of large amounts of dissolved silica from enhanced weathering and/or volcanism in a supposedly sluggish ocean of the EECO, followed during the subsequent middle Eocene global cooling by more vigorous oceanic circulation and consequent upwelling that made this silica reservoir available for enhanced biosilicification, with the formation of chert as a result of biosilica transformation during diagenesis. Instead, we suggest that basin-basin fractionation by deep-sea circulation could have raised the concentration of EECO dissolved silica especially in the North Atlantic, where an alternative mode of silica burial involving widespread direct precipitation and/or absorption of silica by clay minerals could have been operative in order to maintain balance between silica input and output during the upwelling-deficient conditions of the EECO. Cherts may therefore not always be proxies of biosiliceous productivity associated with latitudinally focused upwelling zones.
Resumo:
The predictable in situ production of 230Th from the decay of uranium in seawater, and its subsequent removal by scavenging onto falling particles, provides a valuable tool for normalizing fluxes to the seafloor. We describe a new application, determination of the 232Th that dissolves in the water column and is removed to the seafloor. 232Th is supplied to the ocean in continental minerals, dissolution of which leads to a measurable standing stock in the water column. Sedimentary adsorbed 232Th/230Th ratios have the potential to provide a proxy for estimating the amount of dissolved material that enters the ocean, both today and in the past. Ten core top samples were treated with up to eight different leaching techniques in order to determine the best method for the separating adsorbed from lattice bound thorium. In addition, separate components of the sediments were analyzed to test whether clay dissolution was an important contribution to the final measurement. There was no systematic correlation between the strength of acid used in the leach and the measured 232Th/230Th ratios. In all cases clean foraminifera produced the same ratio as leaches on bulk sediment. In three out of five samples leaches performed on non-carbonate detritus in the <63 µm size fraction were also identical. Without additional water column data it is not yet clear whether there is a simple one to one correlation between the expected deep-water 232Th/230Th and that produced by leaching, especially in carbonate-rich sediments. However, higher ratios, and associated high 232Th adsorbed fluxes, were observed in areas with high expected detrital inputs. The adsorbed fraction was ~35-50% of the total 232Th in seven out of ten samples. Our 230Th normalized 232Th fluxes are reasonable by comparison to global estimates of detrital inputs to the ocean. In nine cases out of ten, the total 230Th-normalized 232Th flux is greater than predicted from the annual dust fall at each specific location, but lower than the average global detrital input from all sources.
Resumo:
The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.
Resumo:
During Ocean Drilling Program (ODP) Leg 177, seven sites were drilled aligned on a transect across the Antarctic Circumpolar Current in the Atlantic sector of the Southern Ocean. The primary scientific objective of Leg 177 was the study of the Cenozoic paleoceanographic and paleoclimatic history of the southern high latitudes and its relationship with the Antarctic cryosphere development. Of special emphasis was the recovery of Pliocene-Pleistocene sections, allowing paleoceanographic studies at millennial or higher time resolution, and the establishment of refined biostratigraphic zonations tied to the geomagnetic polarity record and stable isotope records. At most sites, multiple holes were drilled to ensure complete recovery of the section. A description of the recovered sections and the construction of a multihole splice for the establishment of a continuous composite is presented in the Leg 177 Initial Reports volume for each of the sites (Gersonde, Hodell, Blum, et al., 1999). Here we present the relative abundance pattern and the stratigraphic ranges of diatom taxa encountered from shore-based light microscope studies completed on the Pliocene-Pleistocene sequences from six of the drilled sites (Sites 1089-1094). No shore-based diatom studies have been conducted on the Pliocene-Pleistocene sediments obtained at Site 1088, located on the northern crest of the Agulhas Ridge, because of the scattered occurrence and poor preservation of diatoms in these sections (Shipboard Scientific Party, 1999b). The data included in our report present the baseline of a diatom biostratigraphic study of Zielinski and Gersonde (2002), which (1) includes a refinement of the southern high-latitude Pliocene-Pleistocene diatom zonation, in particular for the middle and late Pleistocene, and (2) presents a biostratigraphic framework for the establishment of age models of the recovered sediment sections. Zielinski and Gersonde (2002) correlated the diatom ranges with the geomagnetic polarity record established shipboard (Sites 1090 and 1092) (Shipboard Scientific Party, 1999c, 1999d) and on shore (Sites 1089, 1091, 1093, and 1094) by Channell and Stoner (2002). The Pliocene-Pleistocene diatom zonation proposed by Zielinski and Gersonde (2002) relies on a diatom zonation from Gersonde and Bárcena (1998) for the northern belt of the Southern Ocean. Because of latitudinal differentiation of sea-surface temperature, nutrients, and salinity between Antarctic and Subantarctic/subtropical water masses, the Pliocene-Pleistocene stratigraphic marker diatoms are not uniformly distributed in the Southern Ocean (Fenner, 1991; Gersonde and Bárcena, 1998). As a consequence, Zielinski and Gersonde (2002) propose two diatom zonations for application in the Antarctic Zone south of the Polar Front (Southern Zonation, Sites 1094 and 1093) and the area encompassing the Polar Front Zone (PFZ) and the Subantarctic Zone (Northern Zonation, Sites 1089-1092). This accounts especially for the Pleistocene zonation where Hemidiscus karstenii, whose first abundant occurrence datum and last occurrence datum defines the subzonation of the northern Thalassiosira lentiginosa Zone, occurs only sporadically in the cold-water realm south of the PFZ and thus is not applicable in sections from this area. However, newly established marker species assigned to the genus Rouxia (Rouxia leventerae and Rouxia constricta) are more related to cold-water environments and allow a refinement of the Pleistocene stratigraphic zonation for the southern cold areas. A study relying on quantitative counts of both Rouxia species confirms the utility of these stratigraphic markers for the identification of sequences attributed to marine isotope Stages 6 and 8 in the southern Southern Ocean (Zielinski et al., 2002).
Resumo:
The Antarctic Polar Front is an important biogeochemical divider in the Southern Ocean. Laminated diatom mat deposits record episodes of massive flux of the diatom Thalassiothrix antarctica beneath the Antarctic Polar Front and provide a marker for tracking the migration of the Front through time. Ocean Drilling Program Sites 1091, 1093 and 1094 are the only deep piston cored record hitherto sampled from the sediments of the circumpolar biogenic opal belt. Mapping of diatom mat deposits between these sites indicates a glacial-interglacial front migration of up to 6 degrees of latitude in the early/mid Pleistocene. The mid-Pleistocene transition marks a stepwise minimum 7° northward migration of the locus of the Polar Front sustained for about 450 kyr until an abrupt southward return to a locus similar to its modern position and further south than any mid-Pleistocene locus. This interval from a "900 ka event" that saw major cooling of the oceans and a d13C minimum through to the 424 ka Mid-Brunhes Event at Termination V is also seemingly characterised by 1) sustained decreased carbonate in the sub-tropical south Atlantic, 2) reduced strength of Antarctic deep meridional circulation, 3) lower interglacial temperatures and lower interglacial atmospheric CO2 levels (by some 30 per mil) than those of the last 400 kyr, evidencing less complete deglaciation. This evidence is consistent with a prolonged period lasting 450 kyr of only partial ventilation of the deep ocean during interglacials and suggests that the mechanisms highlighted by recent hypotheses linking mid-latitude atmospheric conditions to the extent of deep ocean ventilation and carbon sequestration over glacial-interglacial cycles are likely in operation during the longer time scale characteristic of the mid-Pleistocene transition. The cooling that initiated the "900 ka event" may have been driven by minima in insolation amplitude related to eccentricity modulation of precession that also affected low latitude climates as marked by threshold changes in the African monsoon system. The major thresholds in earth system behaviour through the mid-Pleistocene transition were likely governed by an interplay of the 100 kyr and 400 kyr eccentricity modulation of precession.
Resumo:
Sediments in the southeast Atlantic sector of the Southern Ocean were cored during Ocean Drilling Program (ODP) Leg 177 to study the paleoceanographic history of the Antarctic region on short (millennial) to long (Cenozoic) timescales. Seven sites were drilled along a north-south transect across the Antarctic Circumpolar Current (ACC) from 41° to 53°S. The general goals of Leg 177 were twofold: (1) to document the biostratigraphic, biogeographic, and paleoceanographic history of the Paleogene and early Neogene, a period marked by the establishment of the Antarctic cryosphere and the ACC, and (2) to target expanded sections of late Neogene sediments, which can be used to resolve the timing of Southern Hemisphere climatic events on orbital and suborbital time scales (Gersonde, Hodell, Blum, et al., 1999, doi:10.2973/odp.proc.ir.177.1999). Closely spaced measurements of sedimentary physical properties were obtained from all cores recovered during Leg 177 using the ODP whole-round multisensor track. In addition, high-resolution diffuse color reflectance and resistivity measurements were collected on the Oregon State University Split Core Analysis Track. These whole-core and split-core measurements provide high-resolution proxy data sets for the estimation of biogenic and terrigenous mineralogy and mass flux. To assist investigators in calibrating these proxy data sets from sites located within the circum-Antarctic opal belt, samples from Sites 1093 (50°S) and 1094 (53°S) were analyzed for biogenic opal content.