997 resultados para 14-137
Resumo:
Chemical analyses of North Atlantic D.S.D.P. (Deep Sea Drilling Project) sediments indicate that basal sediments generally contain higher concentrations of Fe, Mn, Mg, Pb, and Ni, and similar or lower concentrations of Ti, Al, Cr, Cu, Zn, and Li than the material overlying them. Partition studies on selected samples indicate that the enriched metals in the basal sediments are usually held in a fashion similar to that in basal sediments from the Pacific, other D.S.D.P. sediments, and modern North Atlantic ridge and non-ridge material. Although, on average, chemical differences between basal sediments of varying ages are apparent, normalization of the data indicates that the processes leading to metal enrichment on the crest of the Mid-Atlantic Ridge appear to have been approximately constant in intensity since Cretaceous times. In addition, the bulk composition of detrital sediments also appears to have been relatively constant over the same time period. Paleocene sediments from site 118 are, however, an exception to this rule, there apparently having been an increased detrital influx during this period. The bulk geochemistry, partitioning patterns, and mineralogy of sediments from D.S.D.P. 9A indicates that post-depositional migration of such elements as Mn, Ni, Cu, Zn, and Pb may have occurred. The basement encountered at the base of site 138 is thought to be a basaltic sill, but the overlying basal sediments are geochemically similar to other metalliferous basal sediments from the North Atlantic. These results, as well as those from site 114 where true oceanic basement was encountered, but where there was an estimated 7 m.y. hiatus between basaltic extrusion and basal sediment deposition, indicate that ridge-crest sediments are not necessarily deposited during active volcanism but can be formed after the volcanism has ceased. The predominant processes for metal enrichment in these deposits and those formed in association with other submarine volcanic features is a combination of shallow hydrothermal activity, submarine weathering of basalt, and the formation of ferromanganese oxides which can scavenge metals from seawater. In addition, it seems as though the formation of submarine metalliferous sediments is not restricted to active-ridge areas.
Resumo:
The stratigraphic and biogeographic distribution of more than 170 species of deep-water agglutinated benthic foraminifers (DWAF) from the North Atlantic and adjacent marginal seas has been compared with paleoenvironmental data (e.g. paleobathymetry, oxygenation of the bottom waters, amount of terrigenous input and substrate disturbance). Six general types of assemblages, in which deep water agglutinated taxa occur, are defined from the Turonian to Maastrichtian times: 1. High latitude slope assemblages 2. Low to mid latitude slope assemblages 3. Flysch-type assemblages 4. Deep water limestone assemblages (,,Scaglia,,-type) 5. Abyssal mixed calcareous-agglutinated assemblages 6. Abyssal purely agglutinated assemblages Latitudinal differences in faunal composition are observed, the most important of which is the lack or extreme paucity of calcareous forms in high latitude assemblages. East-to-west differences appear to be of comparatively minor importance. Most DWAF species occur in all studied regions and are thus considered as cosmopolitan. Biostratigraphic turnovers in the taxonomic content of assemblages are observed in the lowermost Turonian, mid-Campanian and in the upper Maastrichtian to lowermost Paleocene. These datum levels correspond to inter-regional and time-constant paleooceanographic events, which probably also affected the deep-water benthic biota. This allows us to use deep-water agglutinated foraminifers for biostratigraphy in the North Atlantic sequences deposited below CCD and to geographically extend the currently used zonal schemes which have been established in the Carpathian and Alpine areas.
Resumo:
Preservation of planktic foraminiferal calcite has received widespread attention in recent years, but the taphonomy of benthic foraminiferal calcite and its influence on the deep-sea palaeotemperature record have gone comparatively unreported. Numerical modeling indicates that the carbonate recrystallization histories of deep-sea sections are dominated by events in their early burial history, meaning that the degree of exchange between sediments and pore fluids during the early postburial phase holds the key to determining the palaeotemperature significance of diagenetic alteration of benthic foraminifera. Postburial sedimentation rate and lithology are likely to be important determinants of the paleoceanographic significance of this sediment-pore fluid interaction. Here we report an investigation of the impact of extreme change in sedimentation rate (a prolonged and widespread Upper Cretaceous hiatus in the North Atlantic Ocean) on the preservation and d18O of benthic foraminifera of Middle Cretaceous age (nannofossil zone NC10, uppermost Albian/lowermost Cenomanian, ~99 Ma ago) from multiple drill sites. At sites where this hiatus immediately overlies NC10, benthic foraminifera appear to display at least moderate preservation of the whole test. However, on closer inspection, these tests are shown to be extremely poorly preserved internally and yield d18O values substantially higher than those from contemporaneous better preserved benthic foraminifera at sites without an immediately overlying hiatus. These high d18O values are interpreted to indicate alteration close to the seafloor in cooler waters during the Late Cretaceous hiatus. Intersite differences in lithology modulate the diagenetic impact of this extreme change in sedimentation rate. Our results highlight the importance of thorough examination of benthic foraminiferal wall structures and lend support to the view that sedimentation rate and lithology are key factors controlling the paleoceanographic significance of diagenetic alteration of biogenic carbonates.
Resumo:
Libro del alumno para el primer nivel (12-14 años) de este programa de orientación y educación para la transición a la vida activa. Presenta los conocimientos, habilidades, destrezas y actitudes útiles; orientaciones para un óptimo aprovechamiento del tiempo, recursos y relaciones para incrementar las oportunidades de éxito, y sobre las competencias y capacitaciones del alumno para su educación y posterior empleo. Consta de tres módulos: I) Autoconocimiento, entrenamiento en las estrategias para lograr el conocimiento de uno mismo y de los demás; II) Toma de decisiones, entrenamiento en las estrategias para dirigir el proyecto de vida; III) Exploración de carrera, entrenamiento en las estrategias para identificar las competencias y relacionarlas con las características de las ocupaciones.
Resumo:
Vorbesitzer: Eljāqīm Carmoly; Abraham Merzbacher
Resumo:
Peat deposits in Greenland and Denmark were investigated to show that high-resolution dating of these archives of atmospheric deposition can be provided for the last 50 years by radiocarbon dating using the atmospheric bomb pulse. (super 14) C was determined in macrofossils from sequential one cm slices using accelerator mass spectrometry (AMS). Values were calibrated with a general-purpose curve derived from annually averaged atmospheric (super 14) CO (sub 2) values in the northernmost northern hemisphere (NNH, 30 degrees -90 degrees N). We present a through review of (super 14) C bomb-pulse data from the NNH including our own measurements made in tree rings and seeds from Arizona as well as other previously published data. We show that our general-purpose calibration curve is valid for the whole NNH producing accurate dates within 1-2 years. In consequence, (super 14) C AMS can precisely date individual points in recent peat deposits within the range of the bomb-pulse (from the mid-1950s on). Comparing the (super 14) C AMS results with the customary dating method for recent peat profiles by (super 210) Pb, we show that the use of (super 137) Cs to validate and correct (super 210) Pb dates proves to be more problematic than previously supposed. As a unique example of our technique, we show how this chronometer can be applied to identify temporal changes in Hg concentrations from Danish and Greenland peat cores.
Resumo:
Vorbesitzer: Dominikanerkloster Frankfurt am Main