997 resultados para 134-832B


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The K-Ar ages from the basaltic rocks of Leg 134 range from Miocene to Holocene (Table 1). Samples were selected in consultation with shipboard scientists; choice of the material from the forearc sites was very limited and confined to clasts. There was a wider choice of material from the sill at Site 833 in the North Aoba Basin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stability of gypsum in marine sediments has been investigated through the calculation of its saturation index at the sediment in situ temperature and pressure, using the entire ODP/IODP porewater composition database (14416 samples recovered from sediments collected during 95 ODP and IODP Legs). Saturation is reached in sediment porewaters of 26 boreholes drilled at 23 different sites, during 12 ODP/IODP Legs. As ocean bottom seawater is largely undersaturated with respect to gypsum, the porewater Ca content or its SO4 concentration, or both, must increase in order to reach equilibrium. At several sites equilibrium is reached either through the presence of evaporitic gypsum layers found in the sedimentary sequence, and/or through a salinity increase due to the presence of evaporitic brines with high concentrations of Ca and SO4. Saturation can also be reached in porewaters of seawater-like salinity (~ 35 per mil), provided sulfate reduction is limited. In this case, saturation is due to the alteration of volcanogenic material which releases large amounts of Ca to the porewaters, where the Ca concentration can reach 55 times its seawater value as for example at ODP Leg 134 site 833. At a few sites, saturation is reached in hydrothermal environments, or as a consequence of the alteration of the basaltic basement. In addition to the well known influence of brines on the formation of gypsum, these results indicate that the alteration of sediments rich in volcanogenic material is a major process leading to gypsum saturation in marine sediment porewaters. Therefore, the presence of gypsum in ancient and recent marine sediments should not be systematically interpreted as due to hypersaline waters, especially if volcanogenic material is present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The differential effects of climate change, sea level, and water mass circulation on deposition/erosion of marine sediments can be constrained from the distribution of unconformities in the world's oceans. I identified temporal and depth patterns of hiatuses ("hiatus events") from a large and chronologically well constrained stratigraphic database of deep-sea sediments. The Paleogene is characterized by few, several million year long hiatuses. The most significant Cenozoic hiatus event spans most of the Paleocene. The Neogene is characterized by short, frequent hiatus events nearly synchronous in shallow and deep water sediments. Epoch boundaries are characterized by peaks in deep water hiatuses possibly caused by an increased circulation of corrosive bottom water and sediment dissolution. The Plio-Pleistocene is characterized by a gradual decrease in the frequency of hiatuses. Future studies will focus on the regional significance of the hiatus events and their possible causes.