991 resultados para 129-801B


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Basaltic rocks recovered from three drill sites in the western Pacific during Ocean Drilling Program Leg 129 have fairly distinct Sr, Nd, and Pb isotopic compositions. The Cretaceous alkali olivine dolerites from Site 800 in the northern part of Pigafetta Basin have fairly low 87Sr/86Sri (0.70292-0.70320) and 143Nd/144Ndi (0.51277-0.51281) and high present-day Pb isotopic ratios (206Pb/204Pb = 20.53-21.45; 207Pb/204Pb = 15.70-15.77; 208Pb/204Pb = 40.02-40.68). The Middle Jurassic tholeiites from Site 801 in the southern part of the basin have low 87Sr/86Sri (0.70237-0.70248), high 143Nd/144Ndi (0.51298-0.51322), and moderate present-day Pb isotopic ratios (206Pb/204Pb = 18.20-19.12; 207Pb/204Pb = 15.47-15.60; 208Pb/204Pb = 37.56-38.18); isotopic compositions of the alkali olivine basalts overlying the tholeiites fall between those of the tholeiites and Site 800 dolerites. The Cretaceous tholeiites from Site 802 in the East Mariana Basin have high 87Sr/86Sri (0.70360-0.70372), fairly low 143Nd/144Ndi (0.51277-0.51280), and fairly low and homogeneous present-day Pb isotopic ratios (206Pb/204Pb = 18.37-18.39; 207Pb/204Pb = 15.49-15.51; 208Pb/204Pb = 38.34-38.39). Isotopic compositions of Site 801 tholeiites are indistinguishable from those of modern mid-ocean ridge basalts, consistent with the proposal that these tholeiites are a part of the oldest Pacific crust. The diverse isotopic compositions of the younger basalts appear to be the result of Jurassic Pacific plate migration over the geologically anomalous south-central Pacific region, wherein they acquired their distinct isotopic compositions. The anomalous region was volcanically more active during the Cretaceous than at present.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sites 800 and 801 in the Pigafetta Basin allow the sedimentary history over the oldest remaining Pacific oceanic crust to be established. Six major deposition stages and events are defined by the main lithologic units from both sites. Mineralogical and chemical investigations were run on a large set of samples from these units. The data enable the evolution of the sediments and their depositional environments to be characterized in relation to the paleolatitudinal motion of the sites. The upper part of the basaltic crust at Site 801 displays a complex hydrothermal and alteration evolution expressed particularly by an ochre siliceous deposit comparable to that found in the Cyprus ophiolite. The oldest sedimentary cover at Site 801 was formed during the Callovian-Bathonian (stage 1) with red basal siliceous and metalliferous sediments similar to those found in supraophiolite sequences, and formed near an active ridge axis in an open ocean. Biosiliceous sedimentation prevailed throughout the Oxfordian to Campanian, with rare incursions of calcareous input during the middle Cretaceous (stages 2, 4, and 5). The biosiliceous sedimentation was drastically interrupted during the Aptian-Albian by thick volcaniclastic turbidite deposits (stage 3). The volcanogenic phases are pervasively altered and the successive secondary mineral parageneses (with smectites, celadonite, clinoptilolite, phillipsite, analcime, calcite, and quartz) define a "mineral stratigraphy" within these deposits. From this mineral stratigraphy, a similar lithologic layer is defined at the top of the Site 800 turbidite unit and the bottom of the Site 801 turbidite unit. Then, the two sites appear to have been located at the same distal distance from a volcanic source (hotspot). They crossed this locality, at about 10°S, at different times (latest Aptian for Site 800, middle Albian for Site 801). The Cretaceous siliceous sedimentation stopped during the late Campanian and was followed by deposition of Cenozoic pelagic red clay (stage 6). This deep-sea facies, which formed below the carbonate compensation depth, contains variable zeolite authigenesis in relation to the age of deposition, and records the global middle Cenozoic hiatus events. At the surface, the red clay from this part of the Pacific shows a greater detrital component than its equivalents from the central Pacific deep basins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This report presents all the available major and trace elemental analyses and Sr, Nd, and Pb isotopic compositions of basaltic rocks recovered from Ocean Drilling Program Sites 800, 801, and 802 during Leg 129 (Table 1). Its main purpose is to provide other investigators a complete summary of geochemical data for Leg 129 basement basalts that they can use for later work. Detailed discussions of the data are presented elsewhere in the volume by Floyd and Castillo (Site 801 geochemistry and petrogenesis, dataset: doi:10.1594/PANGAEA.779154) Floyd et al. (Sites 800 and 802 geochemistry and petrography, dataset: doi:10.1594/PANGAEA.779129), Alt et al. (Site 801 alteration, dataset: doi:10.1594/PANGAEA.779207), and Castillo et al. (Sr, Nd, and Pb isotope geochemistry of Leg 129 basalts, dataset: doi:10.1594/PANGAEA.779191).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Subducted sediments play an important role in arc magmatism and crust-mantle recycling. Models of continental growth, continental composition, convergent margin magmatism and mantle heterogeneity all require a better understanding of the mass and chemical fluxes associated with subducting sediments. We have evaluated subducting sediments on a global basis in order to better define their chemical systematics and to determine both regional and global average compositions. We then use these compositions to assess the importance of sediments to arc volcanism and crust-mantle recycling, and to re-evaluate the chemical composition of the continental crust. The large variations in the chemical composition of marine sediments are for the most part linked to the main lithological constituents. The alkali elements (K, Rb and Cs) and high field strength elements (Ti, Nb, Hf, Zr) are closely linked to the detrital phase in marine sediments; Th is largely detrital but may be enriched in the hydrogenous Fe-Mn component of sediments; REE patterns are largely continental, but abundances are closely linked to fish debris phosphate; U is mostly detrital, but also dependent on the supply and burial rate of organic matter; Ba is linked to both biogenic barite and hydrothermal components; Sr is linked to carbonate phases. Thus, the important geochemical tracers follow the lithology of the sediments. Sediment lithologies are controlled in turn by a small number of factors: proximity of detrital sources (volcanic and continental); biological productivity and preservation of carbonate and opal; and sedimentation rate. Because of the link with lithology and the wealth of lithological data routinely collected for ODP and DSDP drill cores, bulk geochemical averages can be calculated to better than 30% for most elements from fewer than ten chemical analyses for a typical drill core (100-1000 m). Combining the geochemical systematics with convergence rate and other parameters permits calculation of regional compositional fluxes for subducting sediment. These regional fluxes can be compared to the compositions of arc volcanics to asses the importance of sediment subduction to arc volcanism. For the 70% of the trenches worldwide where estimates can be made, the regional fluxes also provide the basis for a global subducting sediment (GLOSS) composition and flux. GLOSS is dominated by terrigenous material (76 wt% terrigenous, 7 wt% calcium carbonate, 10 wt% opal, 7 wt% mineral-bound H2O+), and therefore similar to upper continental crust (UCC) in composition. Exceptions include enrichment in Ba, Mn and the middle and heavy REE, and depletions in detrital elements diluted by biogenic material (alkalis, Th, Zr, Hf). Sr and Pb are identical in GLOSS and UCC as a result of a balance between dilution and enrichment by marine phases. GLOSS and the systematics of marine sediments provide an independent approach to the composition of the upper continental crust for detrital elements. Significant discrepancies of up to a factor of two exist between the marine sediment data and current upper crustal estimates for Cs, Nb, Ta and Ti. Suggested revisions to UCC include Cs (7.3 ppm), Nb (13.7 ppm), Ta (0.96 ppm) and TiO2 (0.76 wt%). These revisions affect recent bulk continental crust estimates for La/Nb and U/Nb, and lead to an even greater contrast between the continents and mantle for these important trace element ratios. GLOSS and the regional sediment data also provide new insights into the mantle sources of oceanic basalts. The classical geochemical distinction between 'pelagic' and 'terrigenous' sediment sources is not valid and needs to be replaced by a more comprehensive understanding of the compositional variations in complete sedimentary columns. In addition, isotopic arguments based on surface sediments alone can lead to erroneous conclusions. Specifically, the Nd/Hf ratio of GLOSS relaxes considerably the severe constraints on the amount of sediment recycling into the mantle based on earlier estimates from surface sediment compositions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interstitial water samples from Leg 129, Sites 800, 801, and 802 in the Pigafetta and Mariana basins (central western Pacific), have been analyzed for major elements, B, Li, Mn, Sr, and 87Sr/86Sr. At all sites waters show enrichment in Ca and Sr and are depleted in Mg, K, Na, SO4, B, alkalinity, and 87Sr compared to seawater. These changes are related to alteration of basaltic material into secondary smectite and zeolite and recrystallization of biogenic carbonate. Water concentration depth profiles are characterized by breaks due to the presence of barriers to diffusion such as chert layers at Sites 800 and 801 and highly cemented volcanic ash at Site 802. In Site 800, below a chert layer, concentration depth profiles are vertical and reflect slight alteration of volcanic matter, either in situ or in the upper basaltic crust. Release of interlayer water from clay minerals is likely to induce observed Cl depletions. At Site 801, two units act as diffusion barrier and isolate the volcaniclastic sediments from ocean and basement. Diagenetic alteration of volcanic matter generates a chemical signature similar to that at Site 800. Just above the basaltic crust, interstitial waters are less evolved and reflect low alteration of the crust, probably because of the presence in the sediments of layers with low diffusivities. At Site 802, in Miocene tuffs, the chemical evolution generated by diagenetic alteration is extreme (Ca = 130 mmol, 87Sr/86Sr = 0.7042 at 83 meters below seafloor) and is accompanied by an increase of the Cl content (630 mmol) due to water uptake in secondary hydrous phases. Factors that enhance this evolution are a high sediment accumulation rate, high cementation preventing diffusive exchange and the reactive composition of the sediment (basaltic glass). The chemical variation is estimated to result in the alteration of more than 20% of the volcanic matter in a nearly closed system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hydrogen isotope compositions have been measured on pore waters from sediments of Leg 129 sites in the Pigafetta and East Mariana basins (central western Pacific). Total water (pore + sorbed waters) contents and their dD have been analyzed for three samples that contain smectite but no zeolite so that sorbed water can be attributed to interlayer water. The H budget for pore and total waters implies that interlayer water is 20 per mil to 30 per mil depleted in D compared to pore water. Because the interlayer/total water molar ratio (0.25 to 0.5) in smectitic sediments is very high, interlayer water represents an important reservoir of D-depleted water in sediments. dD depth profiles for pore water at Sites 800 and 801 show breaks related to chert and radiolarite layers and are relatively vertical below. Above these chert units, pore waters are similar to modern seawater but below, they are between -10 per mil and -5.5 per mil. These values could represent little modified pre-Miocene seawater values, which were D-depleted because of the absence of polar caps, and were preserved from diffusive exchange with modern seawater by the relatively impermeable overlying chert layers. At Site 802, dD values of the pore waters show a decrease in the Miocene tuffs from 0 per mil values at the top to -8 per mil at 250 mbsf. Below, dD values are relatively uniform at about -8ë. Miocene tuffs are undergoing low water/rock alteration. A positive covariation of dD and Cl content of pore water in the tuffs suggests that the increase of dD values could result from secondary smectite formation. Low diffusive exchange coupled with D enrichment due to alteration of preglacial waters could explain the observed profile.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new technique for the precise and accurate determination of Ge stable isotope compositions has been developed and applied to silicate rocks and biogenic opal. The analyses were performed using a continuous flow hydride generation system coupled to a MC-ICP-MS. Samples have been purified through anion- and cation-exchange resins to separate Ge from matrix elements and eliminate potential isobaric interferences. Variations of 74Ge/70Ge ratios are expressed as d74Ge values relative to our internal standard and the long-term external reproducibility of the data is better than 0.2? for sample size as low as 15 ng of Ge. Data are presented for igneous and sedimentary rocks, and the overall variation is 2.4? in d74Ge, representing 12 times the uncertainty of the measurements and demonstrating that the terrestrial isotopic composition of Ge is not unique. Co-variations of 74Ge/70Ge, 73Ge/70Ge and 72Ge/70Ge ratios follow a mass-dependent behaviour and imply natural isotopic fractionation of Ge by physicochemical processes. The range of d74Ge in igneous rocks is only 0.25? without systematic differences among continental crust, oceanic crust or mantle material. On this basis, a Bulk Silicate Earth reservoir with a d74Ge of 1.3+/-0.2? can be defined. In contrast, modern biogenic opal such as marine sponges and authigenic glauconite displayed higher d74Ge values between 2.0? and 3.0?. This suggests that biogenic opal may be significantly enriched in light isotopes with respect to seawater and places a lower bound on the d74Ge of the seawater to +3.0?.This suggests that seawater is isotopically heavy relative to Bulk Silicate Earth and that biogenic opal may be significantly fractionated with respect to seawater. Deep-sea sediments are within the range of the Bulk Silicate Earth while Mesozoic deep-sea cherts (opal and quartz) have d74Ge values ranging from 0.7? to 2.0?. The variable values of the cherts cannot be explained by binary mixing between a biogenic component and a detrital component and are suggestive of enrichment in the light isotope of diagenetic quartz. Further work is now required to determine Ge isotope fractionation by siliceous organisms and to investigate the effect of diagenetic processes during chert lithification.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low-temperature hydrothermal alteration of basement from Site 801 was studied through analyses of the mineralogy, chemistry, and oxygen isotopic compositions of the rocks. The more than 100-m section of 170-Ma basement consists of 60 m of tholeiitic basalt separated from the overlying 60 m of alkalic basalts by a >3-m-thick Fe-Si hydrothermal deposit. Four alteration types were distinguished in the basalts: (1) saponite-type (Mg-smectite) rocks are generally slightly altered, exhibiting small increases in H2O, d18O, and oxidation; (2) celadonite-type rocks are also slightly altered, but exhibit uptake of alkalis in addition to hydration and oxidation, reflecting somewhat greater seawater/rock ratios than the saponite type; (3) Al-saponite-type alteration resulted in oxidation, hydration, and alkali and 18O uptake and losses of Ca and Na due to the breakdown of plagioclase and clinopyroxene; and (4) blue-green rocks exhibit the greatest chemical changes, including oxidation, hydration, alkali uptake, and loss of Ca, Na, and Mg due to the complete breakdown of plagioclase and olivine to K-feldspar and phyllosilicates. Saponite- and celadonite-type alteration of the tholeiite section occurred at a normal mid-ocean ridge basalt spreading center at temperatures <20°C. Near- or off-axis intrusion of an alkali basalt magma at depth reinitiated hydrothermal circulation, and the Fe-Si hydrothermal deposit formed from cool (<60°C) distal hydrothermal fluids. Focusing of fluid flow in the rocks immediately underlying the deposit resulted in the extensive alteration of the blue-green rocks at similar temperatures. Al-saponite alteration of the subsequent alkali basalts overlying the deposit occurred at relatively high water/rock ratios as part of the same low-temperature circulation system that formed the hydrothermal deposit. Abundant calcite formed in the rocks during progressive "aging" of the crust during its long history away from the spreading center.