994 resultados para 125-780C
Resumo:
Abundant serpentinite seamounts are found along the outer high of the Mariana forearc at the top of the inner slope of the trench. One of them, Conical Seamount, was drilled at Sites 778, 779, and 780 during Leg 125. The rocks recovered at Holes 779A and 780C, respectively, on the flanks and at the summit of the seamount, include moderately serpentinized depleted harzburgites and some dunites. These rocks exhibit evidence of resorption of the orthopyroxene, when present, and the local presence of very calcic-rich diopside in veins oblique to the main high-temperature foliation of the rock. The peridotites, initially well-foliated with locally poikiloblastic textures, show overprints of a two-stage deformation history: (1) a high-temperature (>1000°C), low-stress (0.02 GPa), homogeneous deformation that has led to the present Porphyroclastic textures displayed by the rocks and (2) heterogeneous ductile shearing at a much higher stress (0.05 GPa). This heterogeneous shearing probably describes a single tectonic event because it began at high temperatures, producing dynamic recrystallization of olivine in the shear zone, and ended at low temperatures in the stability field of chlorite and serpentine. In a few samples, olivine shows evidence of quasi-hydrostatic recrystallization at a very high temperature. Here, we propose that this recrystallization was related to fluid/magma percolation, a process that can also account for the resorption of the orthopyroxene and for the late crystallization of diopside veins in the rock. The impregnation by fluid or magma, development of the main high-temperature, low-stress deformation, and subsequent migration recrystallization of olivine probably occurred in a mantle fragment involved in the arc formation. In addition, this mantle has preserved structures that may have formed earlier in the oceanic lithosphere upon which the arc formed. Heterogeneous ductile shear zones in the peridotites may have developed during uplift. The "cold" deformation may have taken place during diapiric rise of hot mantle that underwent subsequent serpentinization or gliding along normal faults associated with the extension of the eastern margin of the forearc.
Resumo:
Large serpentinite seamounts are common in the forearc regions between the trench axis and the active volcanic fronts of the Mariana and Izu-Bonin intraoceanic arcs. The seamounts apparently form both as mud volcanoes, composed of unconsolidated serpentine mud flows that have entrained metamorphosed ultramafic and mafic rocks, and as horst blocks, possibly diapirically emplaced, of serpentinized ultramafics partially draped with unconsolidated serpentine slump deposits and mud flows. The clayand silt-sized serpentine recovered from three sites on Conical Seamount on the Mariana forearc region and from two sites on Torishima Forearc Seamount on the Izu-Bonin forearc region is composed predominantly of chrysotile, brucite, chlorite, and clays. A variety of accessory minerals attest to the presence of unusual pore fluids in some of the samples. Aragonite, unstable at the depths at which the serpentine deposits were drilled, is present in many of the surficial cores from Conical Seamount. Sjogrenite minerals, commonly found as weathering products of serpentine resulting from interaction with groundwater, are found in most of the samples. The presence of aragonite and carbonate-hydroxide hydrate minerals argues for interaction of the serpentine deposits with fluids other than seawater. There are numerous examples of sedimentary serpentinite deposits exposed on land that are very similar to the deposits recovered from the serpentine seamounts drilled on ODP Leg 125. We suggest that Conical Seamount may be a type locality for the study of in situ formation of many of these sedimentary serpentinite bodies. Further, we suggest that both the deposits drilled on Conical Seamount and on Torishima Forearc Seamount demonstrate that serpentinization can continue in situ within the seamounts through interaction of the serpentine deposits with both seawater and subduction-related fluids.
Resumo:
Trace element analyses (first-series transition elements, Ti, Rb, Sr, Zr, Y, Nb, and REE) were carried out on whole rocks and minerals from 10 peridotite samples from both Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc using a combination of XRF, ID-MS, ICP-MS, and ion microprobe. The concentrations of incompatible trace elements are generally low, reflecting the highly residual nature of the peridotites and their low clinopyroxene content (<2%). Chondrite-normalized REE patterns show extreme U shapes with (La/Sm)n ratios in the range of 5.03-250.0 and (Sm/Yb)n ratios in the range of 0.05-0.25; several samples show possible small positive Eu anomalies. LREE enrichment is common to both seamounts, although the peridotites from Conical Seamount have higher (La/Ce)n ratios on extended chondrite-normalized plots, in which both REEs and other trace elements are organized according to their incompatibility with respect to a harzburgitic mantle. Comparison with abyssal peridotite patterns suggests that the LREEs, Rb, Nb, Sr, Sm, and Eu are all enriched in the Leg 125 peridotites, but Ti and the HREEs exhibit no obvious enrichment. The peridotites also give positive anomalies for Zr and Sr relative to their neighboring REEs. Covariation diagrams based on clinopyroxene data show that Ti and the HREEs plot on an extension of an abyssal peridotite trend to more residual compositions. However, the LREEs, Rb, Sr, Sm, and Eu are displaced off this trend toward higher values, suggesting that these elements were introduced during an enrichment event. The axis of dispersion on these plots further suggests that enrichment took place during or after melting and thus was not a characteristic of the lithosphere before subduction. Compared with boninites sampled from the Izu-Bonin-Mariana forearc, the peridotites are significantly more enriched in LREEs. Modeling of the melting process indicates that if they represent the most depleted residues of the melting events that generated forearc boninites they must have experienced subsolidus enrichment in these elements, as well as in Rb, Sr, Zr, Nb, Sm, and Eu. The lack of any correlation with the degree of serpentinization suggests that low-temperature fluids were not the prime cause of enrichment. The enrichment in the high-field-strength elements also suggests that at least some of this enrichment may have involved melts rather than aqueous fluids. Moreover, the presence of the hydrous minerals magnesio-hornblende and tremolite and the common resorption of orthopyroxene indicate that this high-temperature peridotite-fluid interaction may have taken place in a water-rich environment in the forearc following the melting event that produced the boninites. The peridotites from Leg 125 may therefore contain a record of an important flux of elements into the mantle wedge during the initial formation of forearc lithosphere. Ophiolitic peridotites with these characteristics have not yet been reported, perhaps because the precise equivalents to the serpentinite seamounts have not been analyzed.