991 resultados para 11-CH-lake1
Resumo:
(Résumé de l'ouvrage) Dans cet ouvrage réunissant théologiens et philosophes, le corps contemporain est pensé par rapport à ce qui l'excède, ce qui le met en scène, ce qui le reprend, ce qui le transforme aujourd'hui. Dans une première partie, l'ouvrage propose des éclairages sur le corps à partir de ce qui met en question sa vision strictement rationnelle. Puis, trois auteurs évoquent les différentes manières dont la Bible, la philosophie et la littérature contemporaine mettent en scène les corps. Dans une troisième partie, sont abordées des questions plus spécifiquement reliées à la tradition catholique, au christianisme primitif et à la pratique de l'ascèse. Enfin, quatre contributions explorent le défi posé par la déréalisation du corps dans nos sociétés d'aujourd'hui, avec, pour clore l'ensemble, une réflexion sur le dualisme qui traverse le questionnement sur le corps.
Resumo:
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.
Resumo:
Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6-72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74-0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25-0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73-0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01-1.65, p = 0.04). These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity.
Resumo:
1908/11 (N11,A7).
Resumo:
1924/11/15 (A58,T91,N22).
Resumo:
1923/11/01 (A57,T90,N21).
Resumo:
1923/11/15 (A57,T90,N22).
Resumo:
1924/11/01 (A58,T91,N21).
Resumo:
1931/11/01 (N11,A65,T98)-1931/11/30.
Resumo:
1921/11/01 (A55,T88,N21)-1921/11/14.
Resumo:
1921/11/15 (A55,T88,N22)-1921/11/30.
Resumo:
1929/11/01 (N11,A63,T96)-1929/11/30.