991 resultados para 11-98
Resumo:
Background research consisted of a hospital case series of all adult burn patients (n = 162) admitted to John Sealy Hospital's burn unit from January 1978 to June 1979. Comparisons between occupationally and nonoccupationally burned adults demonstrated that occupationally burned adults were significantly more likely to have been active in the burn injury event and to have changed jobs during the prior year. They were significantly less likely to have physical or mental problems which contributed to sustaining the burn injury. Comparisons between occupational and nonoccupational burn injury events concluded that occupational burn injury events were significantly more likely to involve multiple sources of energy, sparks as the source of ignition and gases as the source of combustion. Other salient characteristics of occupational burn injuries indicated that subsequent research should focus upon lost workday occupational burns and other injuries sustained by blue-collar petrochemical workers employed in Galveston County, Texas.^ Subsequent research consisted of a historical cohort study of occupational injuries sustained in 1979 by a cohort of blue-collar petrochemical workers (n = 1771) who belonged to O.C.A.W. Local 4-449 in Texas City, Texas. Specific cohort injury rates included 15.08 occupational injuries per 100 person work-years, 11.98 lost workday occupational injuries per 100 person work-years, and 1.64 lost workday occupational burn injuries per 100 person work-years. Salient results from this study indicate that burn injuries are a very important type (in terms of both frequency and severity) of occupational injury sustained by blue-collar petrochemical workers, pipefitters are at greatest risk of lost workday injuries and lost workday burn injuries, company-specific experiences are comparable for lost workday occupational injuries, differences among company-specific nonlost workday occupational injury experiences may not be "safety-related", and minimal job-specific experience may not place employees at greater risk of lost workday burn injuries.^
Resumo:
By analogy with the present-day ocean, primary productivity of paleoceans can be reconstructed using calculations based on content of organic carbon in sediments and their accumulation rates. Results of calculations based on published data show that primary productivity of organic carbon, mass of phosphorus involved in the process, and content of phosphorus in ocean waters were relatively stable during Cenozoic and Late Mesozoic. Prior to precipitation on the seafloor together with biogenic detritus, dissolved phosphorus could repeatedly be involved in the biogeochemical cycle. Therefore, only less than 0.1% of phosphorus is retained in bottom sediments. Bulk phosphorus accumulation rate in ocean sediments is partly consistent with calculated primary productivity. Some epochs of phosphate accumulation also coincide with maxima of primary productivity and minima of the fossilization coefficient of organic carbon. The latter fact can testify to episodes of acceleration of organic matter mineralization and release of phosphorus from sediments leading to increase in the phosphorus reserve in paleoceans and phosphate accumulation in some places.