990 resultados para 104-642C
Resumo:
Results of a detailed paleomagnetic study on largely undisturbed sedimentary sequences recovered in the Voring Plateau region of the Norwegian Sea during Ocean Drilling Program Leg 104 are presented. At each drill site an essentially continuous downhole magnetic reversal pattern could be defined to depths between 200 and 300 m below seafloor allowing correlations with a calibrated geomagnetic time scale and establishing almost complete magnetostratigraphic records for the core material analyzed. A composite section of the drill holes represents the first high-quality chronostratigraphic framework from the lower Miocene through Holocene obtained in the Norwegian Sea. It should provide a basis for first-order correlations with calcareous and siliceous microfossil events and contribute to a further elaboration of the regional paleoceanographic history. A series of major hiatuses in the upper and middle Miocene accounts for about 4 million yr of missing stratigraphic record.
Resumo:
Ostracodes are less common than might be normally expected at Sites 642, 643, and 644, perhaps pointing to the fact that the marine habitat below the overlying Pleistocene ice covers was a severe environment. This explanation, however, would not apply to the Pliocene and Miocene deposits from which ostracodes are just as poorly represented. In the latter case the Iceland-Faeroe Ridge might still have acted as a submerged barrier that did not allow an open ocean circulation of bottom waters. Thus the barrier presumably prevented an exchange of cold subarctic bottom water with that of the open Atlantic and therefore benthic deep-sea migration from the south was impeded. Some Quaternary species are, for the first time, recorded to extend to the Pliocene and/or Miocene.
Resumo:
Silicoflagellate assemblages of ODP Leg 104 Neogene sequences are the basis of an interpretation of changes in the Neogene paleoenvironment of the Norwegian Sea. Fluctuations in the percentages of temperature and nutrient-sensitive taxonomic groups document major changes in sea-surface conditions. A brief, but distinct, cooling event occurred at 18.0-17.5 Ma which resulted in the disappearance of Naviculopsis. Following this early Miocene cooling a long period of increasing surface-water temperature occurred, leading up to a thermal high in the early middle Miocene (14.0 Ma). The early late Miocene (10.0-9.0 Ma) was distinctly cooler than the middle Miocene, but warmer than the remainder of the Neogene. Conditions between 13.0 and 10.0 Ma are unrecorded because of a regional hiatus, which is the earliest evidence for an end to the more temperate and stable conditions of the early to middle middle Miocene. A major plunge in temperatures occurred between 8.5 and 7.4 Ma and during the remainder of the late Miocene and Pliocene; from 7.4 to 2.65 Ma subpolar conditions prevailed. Silicoflagellates disappeared, except for sporadic occurrences, at 2.64 Ma with the beginning of dominant glacial sedimentation. Biogenic opal is absent in sediments younger than 0.76 Ma, indicating the dominance of glacial conditions with extensive sea ice.
Resumo:
Dinoflagellate cysts, pollen, and spores were studied from 78 samples of the Eocene to Miocene section of ODP Site 643 at the outer Wring Plateau. Dinoflagellate cysts ranging from less than 1,000 to rarely over 30,000 per gram of sediment in the Paleogene, and generally between 50,000 and 100,000 in the Miocene were present. The shift to conspicuously higher cyst frequencies takes place in the lowermost Miocene section and appears to reflect increased cyst recruitment rather than a change in sedimentation rate. Of the 179 dinoflagellate cyst forms whose ranges were recorded, 129 are known species. Fifteen assemblage zones have been recognized, although the upper Eocene is missing and no substantial lower Eocene was recorded at Site 643. Norwegian Sea and Rockall Plateau zonations were compared with this study. Detailed correlation with existing onshore section zonations was difficult because key zonal species are inadequately represented; however, the middle to upper Miocene zonation established for Denmark is applicable. Pollen and spores occur with relatively low frequencies, and palynodebris is generally absent, in contrast to the observations from DSDP Leg 38. Thirty-nine samples from Eocene to Miocene sediments at Site 642 were studied and correlated with Site 643. A lower Eocene cyst assemblage present in Hole 642D is older than the questionably lower Eocene assemblage from Site 643. Site 642 has a lower Eocene to lower Miocene hiatus.
Resumo:
Numerous fresh ash layers comprise about 0.3% by volume of Neogene to Holocene sediments drilled at Leg 104 Sites 642 and 643 (Vøring Plateau, North Atlantic). Median grain sizes of the ashes are about 100 /µm and maximum grain sizes range up to 1200 µm. Rhyolitic pumice shards dominate, with minor bubble wall shards. Basaltic shards are poorly vesicular and blocky or round. Phenocrystic plagioclase, zircon, and clinopyroxene occur in the rhyolitic, plagioclase, and clinopyroxene phenocrysts and basaltic lithics in the basaltic tephra. Quartz, amphibole, clinozoisite, and rutile are interpreted as xenocrysts. All ash layers are well-sorted and represent distal fallout from major explosive eruptions. Most ashes are rhyolitic (high-K and low-K) in composition, some are bimodal (tholeiitic and rhyolitic). Early Miocene tephra is dominantly basaltic. Iceland is inferred to be the likely source region for most ashes. Late Miocene high-K rhyolites may have originated from the K-rich Jan Mayen magmatic province. One Quaternary layer with biotite and alkali feldspar phenocrysts may have been derived from Jan Mayen Island. Four individual Pliocene to Holocene ash layers from Sites 642 and 643 can be correlated fairly well. Upper Miocene layers are tentatively correlated as a sequence between Sites 642 and 643. Average calculated layer frequencies are about three layers/m.y. through the Pliocene and Pleistocene and five to eight layers per m.y. through the middle and late Miocene, suggesting rather continuous volcanic activity in the North Atlantic. Episodic magmatic activity during Neogene epochs in this part of the North Atlantic, as postulated in the literature, cannot be confirmed.
Resumo:
A quantative study was made of silicoflagellates recovered from Sites 642 (lower Miocene-upper Pliocene), 643 (lower Miocene-upper Miocene), and 644 (upper Pliocene-Quaternary) on the Voring Plateau. Although disconformities are present in these sequences, they represent a much more complete record of the Neogene than was recovered previously in the Norwegian Sea by DSDP Leg 38. Silicoflagellates are rare or absent for glacial sequences younger than 2.65 Ma, and generally sparse and poorly preserved in the lower upper Pliocene and upper Miocene. Lower and middle Miocene assemblages are diverse and generally well preserved. Temporal changes in the silicoflagellate assemblage are indicative of major paleoceanographic changes in the Norwegian Sea. A regional zonation for the Neogene of the Norwegian Sea is proposed, consisting of eleven zones: Naviculopsis lata Zone, N. quadrata Zone (emended), N. ponticula Zone (emended), Distephanus speculum hemisphaericus Zone (new), Caryocha ernestinae Zone (new), Bachmannocena circulus var. apiculata/Caryocha Zone (new), Distephanus crux scutulatus Zone (new), Bachmannocena diodon nodosa Zone (new), Distephanus boliviensis Zone (new), Ds. jimlingii Zone (elevated from subzonal to zonal status) with Subzones a and b (new), and Ds. speculum Zone (new). The ranges and abundances of over 100 species and morphotypes are tabulated.