897 resultados para 100510 Wireless Communications
Resumo:
Unlike the mathematical encryption and decryption adopted in the classical cryptographic technology at the higher protocol layers, it is shown that characteristics intrinsic to the physical layer, such as wireless channel propagation, can be exploited to lock useful information. This information then can be automatically unlocked using real time analog RF means. In this paper retrodirective array, RDA, technology for spatial encryption in the multipath environment is for the first time combined with the directional modulation, DM, method normally associated with free space secure physical layer communications. We show that the RDA can be made to operate more securely by borrowing DM concepts and that the DM enhanced RDA arrangement is suitable for use in a multipath environment.
Resumo:
The implementation of a dipole antenna co-designed and monolithically integrated with a low noise amplifier (LNA) on low resistivity Si substrate (20 Omega . cm) manufactured in 0.35 mu m commercial SiGe HBT process with f(T)/f(max) of 170 GHz and 250 GHz is investigated theoretically and experimentally. An air gap is introduced between the chip and a reflective ground plane, leading to substantial improvements in efficiency and gain. Moreover, conjugate matching conditions between the antenna and the LNA are exploited, enhancing power transfer between without any additional matching circuit. A prototype is fabricated and tested to validate the performance. The measured 10-dB gain of the standalone LNA is centered at 58 GHz with a die size of 0.7 mm x 0.6 mm including all pads. The simulated results showed antenna directivity of 5.1 dBi with efficiency higher than 70%. After optimization, the co-designed LNA-Antenna chip with a die size of 3 mm x 2.8 mm was characterized in anechoic chamber environment. A maximum gain of higher than 12 dB was obtained.
Resumo:
The statistical properties of the multivariate GammaGamma (ΓΓ) distribution with arbitrary correlation have remained unknown. In this paper, we provide analytical expressions for the joint probability density function (PDF), cumulative distribution function (CDF) and moment generation function of the multivariate ΓΓ distribution with arbitrary correlation. Furthermore, we present novel approximating expressions for the PDF and CDF of the su m of ΓΓ random variables with arbitrary correlation. Based on this statistical analysis, we investigate the performance of radio frequency and optical wireless communication systems. It is noteworthy that the presented expressions include several previous results in the literature as special cases.
Resumo:
Wireless communications had a great development in the last years and nowadays they are present everywhere, public and private, being increasingly used for different applications. Their application in the business of sports events as a means to improve the experience of the fans at the games is becoming essential, such as sharing messages and multimedia material on social networks. In the stadiums, given the high density of people, the wireless networks require very large data capacity. Hence radio coverage employing many small sized sectors is unavoidable. In this paper, an antenna is designed to operate in the Wi-Fi 5GHz frequency band, with a directive radiation pattern suitable to this kind of applications. Furthermore, despite the large bandwidth and low losses, this antenna has been developed using low cost, off-the-shelf materials without sacrificing quality or performance, essential to mass production. © 2015 EurAAP.
Resumo:
A simple electromagnetically coupled wideband printed microstrip antenna having a 2:1 VSWR bandwidth of 38% covering the 5.2/5.8-GHz WLAN, HIPERLAN2, and HiSWANa communication bands is presented. The large bandwidth is obtained by adding a rectangular metal strip on a slotted square microstrip antenna. The antenna occupies an overall dimension of 42 times 55 times 3.2 mm3 when printed on a substrate of dielectric constant 4. It exhibits good radiation characteristics and moderate gain in the entire operating band. Details of the design along with experimental and simulation results are presented and discussed.
Resumo:
Structural Health Monitoring (SHM) requires integrated "all in one" electronic devices capable of performing analysis of structural integrity and on-board damage detection in aircraft?s structures. PAMELA III (Phased Array Monitoring for Enhanced Life Assessment, version III) SHM embedded system is an example of this device type. This equipment is capable of generating excitation signals to be applied to an array of integrated piezoelectric Phased Array (PhA) transducers stuck to aircraft structure, acquiring the response signals, and carrying out the advanced signal processing to obtain SHM maps. PAMELA III is connected with a host computer in order to receive the configuration parameters and sending the obtained SHM maps, alarms and so on. This host can communicate with PAMELA III through an Ethernet interface. To avoid the use of wires where necessary, it is possible to add Wi-Fi capabilities to PAMELA III, connecting a Wi-Fi node working as a bridge, and to establish a wireless communication between PAMELA III and the host. However, in a real aircraft scenario, several PAMELA III devices must work together inside closed structures. In this situation, it is not possible for all PAMELA III devices to establish a wireless communication directly with the host, due to the signal attenuation caused by the different obstacles of the aircraft structure. To provide communication among all PAMELA III devices and the host, a wireless mesh network (WMN) system has been implemented inside a closed aluminum wingbox. In a WMN, as long as a node is connected to at least one other node, it will have full connectivity to the entire network because each mesh node forwards packets to other nodes in the network as required. Mesh protocols automatically determine the best route through the network and can dynamically reconfigure the network if a link drops out. The advantages and disadvantages on the use of a wireless mesh network system inside closed aerospace structures are discussed.