962 resultados para 010206 Operations Research
Resumo:
"Serial no. 97-IIII."
Resumo:
"Serial No. 97-ZZZ."
Resumo:
"Serial no. 97-NNNN."
Resumo:
"Serial no. 97-N."
Resumo:
Mode of access: Internet.
Resumo:
In this paper, we discuss two-dimensional failure modeling for a system where degradation is due to age and usage. We extend the concept of minimal repair for the one-dimensional case to the two-dimensional case and characterize the failures over a two-dimensional region under minimal repair. An application of this important result to a rnanufacturer's servicing costs for a two-dimensional warranty policy is given and we compare the minimal repair strategy with the strategy of replacement of failure. (C) 2003 Wiley Periodicals, Inc.
Resumo:
We present a novel method, called the transform likelihood ratio (TLR) method, for estimation of rare event probabilities with heavy-tailed distributions. Via a simple transformation ( change of variables) technique the TLR method reduces the original rare event probability estimation with heavy tail distributions to an equivalent one with light tail distributions. Once this transformation has been established we estimate the rare event probability via importance sampling, using the classical exponential change of measure or the standard likelihood ratio change of measure. In the latter case the importance sampling distribution is chosen from the same parametric family as the transformed distribution. We estimate the optimal parameter vector of the importance sampling distribution using the cross-entropy method. We prove the polynomial complexity of the TLR method for certain heavy-tailed models and demonstrate numerically its high efficiency for various heavy-tailed models previously thought to be intractable. We also show that the TLR method can be viewed as a universal tool in the sense that not only it provides a unified view for heavy-tailed simulation but also can be efficiently used in simulation with light-tailed distributions. We present extensive simulation results which support the efficiency of the TLR method.
Resumo:
The cross-entropy (CE) method is a new generic approach to combinatorial and multi-extremal optimization and rare event simulation. The purpose of this tutorial is to give a gentle introduction to the CE method. We present the CE methodology, the basic algorithm and its modifications, and discuss applications in combinatorial optimization and machine learning. combinatorial optimization
Resumo:
We consider the problem of estimating P(Yi + (...) + Y-n > x) by importance sampling when the Yi are i.i.d. and heavy-tailed. The idea is to exploit the cross-entropy method as a toot for choosing good parameters in the importance sampling distribution; in doing so, we use the asymptotic description that given P(Y-1 + (...) + Y-n > x), n - 1 of the Yi have distribution F and one the conditional distribution of Y given Y > x. We show in some specific parametric examples (Pareto and Weibull) how this leads to precise answers which, as demonstrated numerically, are close to being variance minimal within the parametric class under consideration. Related problems for M/G/l and GI/G/l queues are also discussed.
Resumo:
The estimation of P(S-n > u) by simulation, where S, is the sum of independent. identically distributed random varibles Y-1,..., Y-n, is of importance in many applications. We propose two simulation estimators based upon the identity P(S-n > u) = nP(S, > u, M-n = Y-n), where M-n = max(Y-1,..., Y-n). One estimator uses importance sampling (for Y-n only), and the other uses conditional Monte Carlo conditioning upon Y1,..., Yn-1. Properties of the relative error of the estimators are derived and a numerical study given in terms of the M/G/1 queue in which n is replaced by an independent geometric random variable N. The conclusion is that the new estimators compare extremely favorably with previous ones. In particular, the conditional Monte Carlo estimator is the first heavy-tailed example of an estimator with bounded relative error. Further improvements are obtained in the random-N case, by incorporating control variates and stratification techniques into the new estimation procedures.
Resumo:
In this Erratum, we point out the reason for an error in the derivation of a result in our earlier paper, “Two-Dimensional Failure Modeling with Minimal Repair” [1], which appeared in the April 2004 issue of this journal, 51:3, on pages 345–362, and give the correct derivation.
Resumo:
Sales and operations research publications have increased significantly in the last decades. The concept of sales and operations planning (S&OP) has gained increased recognition and has been put forward as the area within Supply Chain Management (SCM). Development of S&OP is based on the need for determining future actions, both for sales and operations, since off-shoring, outsourcing, complex supply chains and extended lead times make challenges for responding to changes in the marketplace when they occur. Order intake of the case company has grown rapidly during the last years. Along with the growth, new challenges considering data management and information flow have arisen due to increasing customer orders. To manage these challenges, case company has implemented S&OP process, though initial process is in early stage and due to this, the process is not managing the increased customer orders adequately. Thesis objective is to explore extensively the S&OP process content of the case company and give further recommendations. Objectives are categorized into six different groups, to clarify the purpose of this thesis. Qualitative research methods used are active participant observation, qualitative interviews, enquiry, education, and a workshop. It is notable that demand planning was felt as cumbersome, so it is typically the biggest challenge in S&OP process. More proactive the sales forecasting can be, more expanded the time horizon of operational planning will turn out. S&OP process is 60 percent change management, 30 percent process development and 10 percent technology. The change management and continuous improvement can sometimes be arduous and set as secondary. It is important that different people are required to improve the process and the process is constantly evaluated. As well as, process governance is substantially in a central role and it has to be managed consciously. Generally, S&OP process was seen important and all the stakeholders were committed to the process. Particular sections were experienced more important than others, depending on the stakeholders’ point of views. Recommendations to objective groups are evaluated by the achievable benefit and resource requirement. The urgent and easily implemented improvement recommendations should be executed firstly. Next steps are to develop more coherent process structure and refine cost awareness. Afterwards demand planning, supply planning, and reporting should be developed more profoundly. For last, information technology system should be implemented to support the process phases.
Resumo:
In this thesis we focus on optimization and simulation techniques applied to solve strategic, tactical and operational problems rising in the healthcare sector. At first we present three applications to Emilia-Romagna Public Health System (SSR) developed in collaboration with Agenzia Sanitaria e Sociale dell'Emilia-Romagna (ASSR), a regional center for innovation and improvement in health. Agenzia launched a strategic campaign aimed at introducing Operations Research techniques as decision making tools to support technological and organizational innovations. The three applications focus on forecast and fund allocation of medical specialty positions, breast screening program extension and operating theater planning. The case studies exploit the potential of combinatorial optimization, discrete event simulation and system dynamics techniques to solve resource constrained problem arising within Emilia-Romagna territory. We then present an application in collaboration with Dipartimento di Epidemiologia del Lazio that focuses on population demand of service allocation to regional emergency departments. Finally, a simulation-optimization approach, developed in collaboration with INESC TECH center of Porto, to evaluate matching policies for the kidney exchange problem is discussed.