988 resultados para 0.05 µm
Resumo:
Results of investigations of Baikal bottom sediments from a long core (BDP-97) and several short (0-1 m) cores are presented. It can be shown that Holocene sediments in the Baikal basins consist of biogenic-terrigenous muds accumulated under still sedimentation conditions, and of turbidites formed during catastrophic events. The turbidites can be distinguished from the host sediments by their enrichment in heavy minerals and thus their high magnetic susceptibility. Often, Pliocene and Pleistocene diatom species observed in the Holocene sediments (mainly in the turbidites) point to redeposition of ancient offshore sediments. Our results indicate that deltas, littoral zones, and continental slopes are source areas of turbidites. The fact that the turbidites occur far from their sources confirms existence of high-energy turbidity currents responsible for long-distance lateral-sediment transport to the deep basins of the lake.
Resumo:
This chapter was previously intended to trace volcanic episodes through the Neogene and Pleistocene geological history recorded in the sedimentary sections drilled on the Emperor seamounts. Drilling disturbance, poor core recovery, and incomplete stratigraphic sections recovered from the seamounts have frustrated that plan, however. Moreover, the Leg 55 sedimentologists found in their smear-slide studies that transported island-arc tephra is scarce in the sediments, if present at all. So we have restricted our objective to description of the volcaniclastic admixture in sediments, as determined by mineralogical and geochemical data. We studied geochemistry of bulk samples (see Murdmaa et al., 1980), coarse-fraction mineralogy, and additional smear slides. The results obtained, however, do not tell much more about the volcaniclastic matter than did shipboard core descriptions.
Resumo:
Rock material sampled from the Mir manned deep-sea submersibles and by dradges, grabs, and sediment cores over a vast area of the North Atlantic was analyzed to show that this material is of continental origin, unlike original rocks of the ocean floor. It is proved to be related to iceberg rafting during Quaternary glaciations. Independent data on distribution and composition of sandy and silty grains in sediment cores also support this relation to the recent glaciation. New criteria for identification of iceberg rock matter in pelagic sediments are presented on the base of analysis of all available data.