1000 resultados para Globigerina rubescens
Resumo:
Distribution of planktonic foraminiferal tests was studied in four drill cores of Upper Quaternary sediments from the zone of influence of the Canary upwelling and in nine sediment cores from the zone of the Benguela upwelling. Paleotemperatures were reconstructed from these data. It was established that under conditions during stadials, interstadials, and interglacials of Quaternary time, the upwelling existed continuously, intensifying and expanding during colder epochs and weakening and contracting in the warmer intervals. During the last stadial (about 18000 yrs ago), relative cooling of sea waters as compared to central regions of the ocean in the zone of the Canary upwelling was not lower than 9°C (4.5°C higher than at present time), and in the zone of the Benguela upwelling it was not lower than 15°C (8.5°C higher than at present time).
Resumo:
Diverse, warm-water planktonic foraminiferal faunas prevailed on the Wombat and Exmouth plateaus during the Neogene, in spite of the northward drift of Australia across 10° to 15° latitude since the early Miocene. Invasions of cool-water species occurred during periods of global cooling in the late middle Miocene, late Miocene, and Pleistocene, and reflect periods of increased northward transport of cool surface water, probably via the West Australian Current. The sedimentary record of the Neogene on Wombat and Exmouth Plateau is interrupted by two hiatuses (lower Miocene, Zone N5, and upper middle to upper Miocene, Zones N15-N17), and one redeposited section of upper Miocene to uppermost Pliocene sediments. Mechanical erosion or nondeposition by increased deep-water flow or tilting and uplift of Wombat and Exmouth plateaus, resulting in sediment shedding, are the most likely explanations for these Miocene hiatuses, but which of these processes were actually operative on the Wombat and Exmouth plateaus is uncertain. The redeposited section of upper Miocene to uppermost Pliocene sediments in Hole 761B, however, certainly reflects a latest Pliocene period of uplift and tilting of the Wombat Plateau. An important finding was the occurrence of Zone N15-correlative sediments in Hole 762B without any representative of Neogloboquadrina. Similar findings in Java and Jamaica indicate that the earliest spreading of Neogloboquadrina acostaensis in the tropical region resulted from migration. The evolution of this species, therefore, must have taken place in higher latitudes. I suggest that Neogloboquadrina acostaensis evolved from Neogloboquadrina atlantica in the North Atlantic within Zone NN9, but how and where in the region this speciation took place is still uncertain
Resumo:
Distribution of planktonic foraminiferal tests was studied in 15 Upper Quaternary sediment cores from the continental slope of Africa, the Canary and Cape Verde basins, and slopes of the Mid-Atlantic Ridge. In all the cores substantial variations were found in relationship between foraminiferal planktonic species reflecting fluctuations of mean annual temperatures of surface waters. Temperature difference in temperatures between present time and that of the maximum of the stadial of the last continental glaciation glacial stadial (about 18,000 yrs ago) ranges from 8.5°C in the Canary upwelling region to minimum values of 2.0°C in the central part of the ocean, i.e. the southern part of the subtropical gyre. Temperature difference the Holocene optimum and 18,000 yrs ago ranges from 10°C to 3°C. Age estimates are supported by radiocarbon dates.
Resumo:
The monograph is devoted to the main results of research on the Trans Indian Ocean Geotraverse from the Maskarene Basin to the north-western margin of Australia. These results were obtained by Russian specialists and together with Indian specialists during 15 years of cooperation in investigation of geological structure and mineral resources of the Indian Ocean. The monograph includes materials on information support of marine geological and geophysical studies, composition and structure of information resources on the Indian Ocean, bathymetry and geomorphology, structure and geological nature of the magnetic field, gravity field, plate tectonics, crustal structure and sedimentary cover, seismic stratigraphy, perspectives for detecting oil and gas, solid minerals, sediment composition, composition and properties of clay minerals, stratigraphy and sediment age, chemical composition of sediments, composition of and prospects for solid minerals.
Resumo:
During Leg 41 Neogene sediments were recovered from five sites off northwest Africa. On the Sierra Leone Rise (Site 366), Neogene sediments consist of nanno oozes, nanno chalk, and calcareous clays 230 meters thick, resting conformably on the late Oligocene sediments. The common succession of zones occurs with two hiatuses. The lower gap corresponds to an interval around the lower/middle Miocene boundary (the Praeorbulina glomerosa and Orbulina suturalis-Globorotalia peri-pheroronda zones are absent) and the upper gap coincides with an interval around the middle/upper Miocene boundary (the Sphaeroidinellopsis sub-dehiscens-GIobigerina druryi, Globigerina nepenthes-Globorotalia siakensis and Globorotalia conlinuosa zones are missing). In the Cape Verde Basin (Site 367) deep-water Neogene turbidites (about 200-250 m thick) contain poor fauna of redeposited and sorted Cretaceous, Eocene, Oligocene, and Neogene species. On the Cape Verde Rise (Site 368) the Neogene section starts with slightly calcareous and non-calcareous clays with poor planktonic foraminifers of the lower Miocene. Later on this area was uplifted and clayey sediments have been replaced upsection in order by more shallow-water clayey nanno and nanno-foraminifer oozes and marls and pure calcareous oozes. In the middle Miocene, planktonic foraminifers are still not diverse, but since the level of the Globigerina nepenthes-Globorotalia siakensis Zone, almost all Neogene zones have been traced. The minimum thickness of the Neogene sediments is about 230 meters. On the continental slope off Spanish Sahara (Site 369) monotonous calcareous pelagic sediments of Neogene age (164 m thick) overlie the late Oligocene comformably, or with a small time gap. A set of zones beginning from the Globigerinoides primordis-Globorotaiia kugleri Zone up to the Globorotalia fohsi fohsi Zone has been revealed with a gap corresponding to the Globigerinita stainforthi and the Globigerinatella insueta-Globigerinoides irilobus zones. Above that follow sediments with heterogeneous microfauna which result from redeposition or mixing of sediments during drilling. The section ends with sediments of the late Miocene and lower Pliocene with abundant planktonic foraminifers. The latter are unconformably overlain by the Quaternary ooze. In the Morocco basin (Site 370) deep-water marls and calcareous clays of the lower Miocene contain poor assemblages of planktonic foraminifers. The middle and upper Miocene are represented by turbidites (alternation of nanno oozes, clays, siltstones, and sands) with heterogeneous microfauna. Total thickness of Neogene is up to 200 meters. In general the Neogene foraminifer microfauna of the area studied includes the majority of species which developed within the tropical-subtropical belt. The entire succession of the Miocene and Pliocene foraminifer zones occurs. The only exclusion is the Sphaeroidinellopsis subdehiscens-Globigerina druryi Zone of the middle Miocene. The distribution of species is shown on three tables. Comments are given for 47 species and subspecies of foraminifers (stratigraphic ranges, peculiarities of morphology, and ultrastructure of the shell wall).
Resumo:
The first thorough analysis of microfossils from ore-bearing sediments of the Ashadze-1 Hydrothermal Field in the Mid-Atlantic Ridge sampled during Cruise 26 of R/V Professor Logachev in 2005 revealed substantial influence of hydrothermal processes on preservation of planktonic calcareous organisms as well as on preservation and composition of benthic foraminifera. From lateral and vertical distribution patterns and secondary alterations of microfossils it is inferred that the main phase of hydrothermal mineralization occurred in Holocene. Heavy metals (Cu, Co, Cr, and Ag) were accumulated by foraminiferal tests and in their enveloping Fe-Mn crusts. Distribution of authigenic minerals replacing foraminiferal tests demonstrates local zoning related to hydrothermal activity. There are three mineral-geochemical zones defined: sulfide zone, zone with elevated Mg content, and zone of Fe-Mn crusts.
Resumo:
Eocene through Quaternary planktonic foraminifers were identified in cores recovered during Leg 126. Turbidites and volcanic ash beds are intercalated with hemipelagic sediments. Preservation of foraminifers is variable, ranging from excellent to poor and appears to have been affected by fluctuations in the carbonate compensation depth (CCD), depth of burial, changes in bottom water temperature, current velocity, sediment accumulation rates and seafloor topography. Preservation of foraminifers in Quaternary sediments is generally good, however, species abundance varies by a factor of I05-106 and reflects dilution by volcanogenic as well as terrigenous constituents and cannot be used for paleoceanographic reconstructions. In pre-Quaternary deposits planktonic foraminiferal tests frequently exhibit dissolution effects; biostratigraphic zonation and placement of zonal boundaries is difficult owing to hiatuses, dissolution facies, extraneously deposited sediments, and discontinuous coring. The Eocene foraminiferal faunas include specimens of the Globorotalia cerroazulensis plexus, markers of Zone P16 as well as Globigerina senni and Globigerinatheka spp., which became extinct before the end of the Eocene. Six hiatuses and/or dissolution periods, probably reflecting global cooling events and/or changes in oceanic circulation patterns were recorded at Site 792. Recrystallized, poorly preserved, possibly reworked Eocene species (Globigerina senni and Globigerapsis sp.) were recorded in sediments at Site 793.
Resumo:
The mid-Piacenzian (MP) warm period (3.264-3.025 Ma) has been identified as the most recent time in geologic history during which mean global surface temperatures were considerably warmer than today for a sustained period. This interval has therefore been proposed as a potential (albeit imperfect) analog for future climate change and as such, has received much scientific attention over the past two decades. Central to this research effort is the Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) project, an iterative paleoenvironmental reconstruction of the MP focused on increasing our understanding of warm-period climate forcings, dynamics, and feedbacks by providing three-dimensional data sets for general circulation models. A mainstay of the PRISM project has been the development of a global sea surface temperature (SST) data set based primarily upon quantitative analyses of planktic foraminifer assemblages, supplemented with geochemical SST estimates wherever possible. In order to improve spatial coverage of the PRISM faunal data set in the low and mid-latitude North Atlantic, this study provides a description of the MP planktic foraminifer assemblage from five Ocean Drilling Program sites (951, 958, 1006, 1062, and 1063) in the subtropical gyre, a region critical to Atlantic Ocean circulation and tropical heat advection. Assemblages from each core provide evidence for a temperature- and circulation-driven 5-10° northward displacement of MP faunal provinces, as well as regional shifts in planktic foraminifer populations linked to species ecology and interactions. General biogeographic trends also indicate that, relative to modern conditions, gyre circulation was stronger (particularly the Gulf Stream, North Atlantic Current, and North Equatorial Current) and meridionally broader. A comparison of mid-Piacenzian and modern North Atlantic planktic foraminifer assemblages suggests that low latitude western boundary currents were less than 1 °C warmer while eastern boundary currents were ~1-2 °C warmer, supporting the hypothesis of enhanced northward heat advection along western boundary currents and warming of high latitude Northeast Atlantic source regions for the Canary Current. These findings are consistent with a model of reduced meridional SST gradients, with little-to-no low latitude warming, and more vigorous ocean circulation. Results therefore support the theory that enhanced meridional overturn circulation and associated northward heat advection made an important contribution, in conjunction with elevated atmospheric CO2 concentrations, to the 2-3 °C global surface temperature increase (relative to today) and strong polar amplification of SST warmth during the MP warm period.
Resumo:
The southwest Pacific Ocean covers a broad range of surface-water conditions ranging from warm, salty water in the subtropical East Australian Current to fresher, cold water in the Circumpolar Current. Using a new database of planktonic foraminifera assemblages (AUSMAT-F2), we demonstrate that the modern analog technique can be used to accurately reconstruct the magnitude of sea-surfacetemperature (SST) in this region. We apply this technique to data from 29 deep-sea cores along a meridional transect of the southwest Pacific Ocean to estimate the magnitude of SST cooling during the Last Glacial Maximum. We find minimal cooling in the tropics (0°-2°C), moderate cooling in the subtropical midlatitudes (2°-6°C), and maximum cooling to the southeast of New Zealand (6°-10°C). The magnitude of cooling at the sea surface from the tropics to the temperate latitudes is found to generally be less than cooling at the surface of adjacent land masses.
Resumo:
Faunal analyses of planktonic foraminifera and upper-water temperature reconstructions with the modern analog technique are studied and compared to themagnetic susceptibility and gamma ray logs of ODP Core 999A (western Caribbean) for the past 560 kyr in order to explore changes in paleoceanographic conditions in the western Caribbean Sea. Long-term trends in the percentage abundance of planktonic foraminifera inODP Core 999Asuggest two hydrographic scenarios: before and after 480 ka.High percentage abundances of Neogloboquadrina pachyderma and Globorotalia inflata, low abundances of Globorotalia menardii and Globorotalia truncatulinoides, low diversity, and sea-surface temperatures (SST) under 24 °C are typical characteristics occurring from 480 to 560 ka. These characteristics suggest a "shallow" well-oxygenated upper thermocline and the influx of nutrients by either seasonal upwelling plumes and/or eddy-mediated entrainment. The second scenario occurred after 480 ka, and it is characterized by high and fluctuating percentage abundances of Neogloboquadrina dutertrei, G. truncatulinoides, G. menardii, Globigerinita glutinata, Globigerinella siphonifera, and Globigerinoides ruber; a declining trend in diversity; and large SSTs. These characteristics suggest a steady change from conditions characterized by a "shallow" thermocline and chlorophyll maximum to conditions characterized by a "deep" thermocline (mainly during glacial stages) and by more oligotrophic conditions. The influence of the subtropical North Atlantic on the upper thermocline was apparently larger during glacial stages, thus favoring a deepening of the thermocline, an increase in sea-surface salinity, and a dramatic reduction of nutrients in the Guajira upwelling system. During interglacial stages, the influx of nutrients from the Magdalena River is stronger, thus resulting in a deep chlorophyll maximumand a fresher upper ocean. The eddy entrainment of nutrients is the probable mechanism responsible of transport from the Guajira upwelling and Magdalena River plumes into ODP 999A site.