987 resultados para ± opal-CT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of neogenic opaline structures, not previously reported in the literature, as well as other neogenic phases are described from four Oligocene to Pliocene biosiliceous sediment samples from Hole 699A. The possible influence of microbes on the formation or the morphology of some of them is discussed. The samples, which are early Pliocene, early to middle Miocene, and late Oligocene (two) in age, were histologically fixed aboard ship upon retrieval. Investigations of the samples used SEM (with Edax/Tracor) and XRD methods. Diagenesis has affected all four samples, but the most extensive development of neoformed structures occurs in the Miocene and uppermost Oligocene samples, where microbial filaments (0.05 to 10 ?m long), microbial colonies, and siliceous microhemispheroids (0.2 to 0.7 µm diameter) were observed. The latter encrust filaments, diatoms, and detrital grains to varying degrees. Other neoformed structures include (1) flakes formed by coalesced microhemispheroids, some of which are guided by short, stubby filaments, which occur only in the Miocene and uppermost Oligocene samples, and (2) flakes characterized by smooth or microfissured surfaces, which grow on diatom frustules and in pore spaces and have a more widespread distribution. The XRD data indicate possible cristobalite formation in the Miocene and uppermost Oligocene samples; we believe that the neoformed opaline structures (encrusted filaments and microhemispheroids) may represent an early phase of opal-CT. The timing of neoformation of most of these features appears to have been fairly recent, continuing even at the time of sampling. There appears to be no direct correlation of this incipient, lower Miocene-uppermost Oligocene diagenetic layer and the pore-water chemistry profiles; a massive increase in shear strength in these sediments, however, may indicate some cementation. Smectite was identified by XRD as the most prominent clay mineral in these generally clay-poor sediments. Honeycombed minerals with filamentous edges, which could correspond to smectite, were observed with SEM in the pore spaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eocene to Holocene sediments from Ocean Drilling Program (ODP) Site 647 (Leg 105) in the southern Labrador Sea, approximately 200 km south of the Gloria Drift deposits, were investigated for their biogenic silica composition. Three sections of different diagenetic alteration products of primary siliceous components could be distinguished: (1) opal-A was recorded in the Miocene and the early Oligocene time intervals with strongly corroded siliceous skeletons in the Miocene and mostly well preserved biogenic opal in the early Oligocene; (2) opal-CT precipitation occurs between 250-440 meters below seafloor (mbsf) (earliest Oligocene to late Eocene); (3) between 620-650 mbsf (early/middle Eocene), biogenic opal was transformed to clay minerals by authigenesis of smectites. Using accumulation rates of biogenic opal, paleoproductivity was estimated for the early Oligocene to late Eocene interval. A maximum productivity of biogenic silica probably occurred between 35.5 and 34.5 Ma (early Oligocene). No evidence for opal sedimentation during most of middle Eocene was found. However, at the early/middle Eocene boundary (around 52 Ma), increased opal fluxes were documented by diagenetic alteration products of siliceous skeletons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 15-meter sequence of early Aptian organic-matter-rich sediments, cored at Deep Sea Drilling Project Site 463 (western Mid-Pacific Mountains) has been submitted for detailed mineralogical studies (XRD, SEM) and organiccarbon characterization. Although intense diagenesis has obscured the sedimentary record of depositional conditions, the history has been tentatively reconstructed. Through sustained volcanic activity and alteration processes on the archipelago, large amounts of silica were released into the sea water, resulting in a "bloom" of radiolarians. Hard parts settled in large amounts, yielding a hypersiliceous sediment; amorphous silica was diagenetically transformed into chalcedony, opal-CT and clinoptilolite through dissolution and recrystallization. Oxidization of part of the radiolarian soft parts (1) depleted the sea water in dissolved oxygen, allowing the burial of organic matter, and (2) generated carbon dioxide which led to dissolution of most of the calcareous tests. Moderate depositional depth and a high sedimentation rate are though to have prevailed during this episode. An immature stage of evolution is assigned to the studied organic matter, which is of two origins: autochthonous marine material, and allochthonous humic compounds and plant debris. Rhythmic sedimentation characterizes the distribution of the organic matter; each sequence shows (1) an upward progressive increase in organic-carbon content, and (2) an upward enrichment in marine organic matter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mineralogy of both bulk- and clay-sized fractions of samples from Sites 671, 672, and 674 of ODP Leg 110 was determined by X-ray diffraction. The major minerals include quartz, calcite, plagioclase feldspar, and the clay minerals smectite, illite, and kaolinite. The smectite is a dioctahedral montmorillonite and is derived primarily from degradation of volcanic ash. Percentage of smectite varies with sediment age; Miocene and Eocene sediments are the most smectite-rich. High smectite content tends to correlate with elevated porosity, presumably because of the ability of smectite clays to absorb significant amounts of interlayer water. Because of a change in physical properties, the decollement zone at Site 671 formed in sediments immediately subjacent to a section of smectite-rich, high-porosity, Miocene-age sediments. Sediments above the decollement at Site 671, as well as all sediments analyzed from Sites 672 and 674, contain nearly pure smectite characteristic of the alteration of volcanic ash. Within the decollement zone and underthrust sequence, however, the smectite contains up to 65% illite interlayers. Although the illite/smectite could be interpreted as detrital clay derived from South America, its absence in the sediments stratigraphically equivalent to the decollement and underthrust sequences at Sites 672 and 674 favors the interpretation that it originated by diagenetic alteration of pre-existing smectite similar to that in the overlying sediments. A significant percentage of the freshening of the pore waters observed in these zones could be due to the water released during smectite dehydration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different generations of complex authigenic carbonates formed in siliceous muds (lithologic Unit IV) and hemipelagic clays (lithologic Unit V) of ODP Site 643, Leg 104 Norwegian Sea. The dominant phase in Unit IV is an early diagenetic Mn, Fe-calcite with a strong negative d13C ( -14 to -16 per mil) signature, and slightly negative d180 values. The strong negative d13C results from extensive incorporation of 12C-enriched CO2 derived from bacterial degradation of marine organic matter into early Mn, Fe - calcite cements. Concomitant framboidal pyrite precipitation and abundant SEM microtextures showing excellent preservation of delicate structures of fragile diatom valves by outpourings with early Mn-calcites strongly support their shallow burial formation before the onset of compaction. Later generations of authigenic mineralizations in lithologic Unit IV include minor amounts of a second generation of calcite with platy crystals, possibly precipitated along with opal-A dissolution, and finally opal-CT crystallization in deeper seated environments overgrowing earlier precipitates with films and lepispheres. The last mineralization is collophane (fluor apatite) forming amorphous aggregates and tiny hexagonal crystals. Authigenic mineral assemblages in lithologic Unit V consist of rhodochrosites, transitional rhodochrosite/manganosiderites, and apatite. A negative d13C ( -7.1 to -15.6 per mil) and a fluctuating d18O signal indicates that the micritic to sparitic rhodochrosites, transitional rhodochrosites/manganosiderites were formed at various burial depths. CO2 resulted from organic matter degradation in the lowermost sulfate reduction zone and from biogenic methane generation in the lowermost sediments, resulting in variable and negative d13C signals. The change in carbonate mineralogy reflects major compositional differences compared to sediments in Unit IV. Most prominent is an increase in altered ash as a primary sediment component and a sudden decrease of siliceous microfossils. Upward diffusion of cations, lowered salinities in pore waters, and elevated temperatures provide diagenetic environments favoring increased remobilization processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During Leg 127, the formation microscanner (FMS) logging tool was used as part of an Ocean Drilling Program (ODP) logging program for only the second time in the history of the program. Resistivity images, also known as FMS logs, were obtained at Sites 794 and 797 that covered nearly the complete Yamato Basin sedimentary sequence to a depth below 500 mbsf. The FMS images from these two sites at the northeastern and southwestern corners of the Yamato Basin thus were amenable to comparison. A strong visual correlation was noticed between the FMS logs taken in Holes 794B and 797C in an upper Miocene interval (350-384 mbsf), although the two sites are approximately 360 km apart. In this interval, the FMS logs showed a series of more resistive thin beds (10-200 cm) alternating with relatively lower resistivity layers: a pattern that was manifested by alternating dark (low resistivity) and light (high resistivity) banding in the FMS images. We attribute this layering to interbedding of chert and porcellanite layers, a common lithologic sequence throughout Japan (Tada and Iijima, 1983, doi:10.1306/212F82E7-2B24-11D7-8648000102C1865D). Spatial frequency analysis of this interval of dominant dark-light banding showed spatial cycles of period of 1.1 to 1.3 and 0.6 m. This pronounced layering and the correlation between the two sites terminate at 384 mbsf, coincident with the opal-CT to quartz transition at Site 794. We think the correlation in the FMS logs might well extend earlier in the middle Miocene, but the opal-CT to quartz transition obscures this layering below 384 mbsf. Although 34 m is only a small part of the core recovered at these two sites, it is significant because it represents an area of extremely poor core recovery and an interval for which a near-depositional hiatus was postulated for Site 797, but not for Site 794.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of excellent upper Miocene through Quaternary diatomaceous sequences recovered at four sites during Leg 127 was examined for diatoms. The diagenetic transition from opal-A to opal-CT is a diachronic horizon from the uppermost part of the Denticulopsis katayamae Zone (8.5 Ma) at Hole 797B to the uppermost part of the Neodenticula kamtschatica Zone (5.73 Ma) at Hole 795A. The diatom zonation of Koizumi (1985) best divides the upper Miocene to Quaternary sequences above the opal-A/opal-CT boundary and also is useful to date carbonate concretions including diatoms below the boundary. Forty diatom datum levels were evaluated biostratigraphically based on the sediment accumulation rate curve, and several isochronous datum levels are newly proposed for the Japan Sea area. A warm-water current did not penetrated into the Japan Sea through the Tsushima strait during the late Miocene and Pliocene time, because subtropical warm-water diatoms are essentially not present in such sediment samples. The occurrences of diatom are cyclic throughout the Quaternary sediments and are affected by eustatic sea level changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We detected authigenic clinoptilolites in two core samples of tuffaceous, siliceous mudstone in the lower Miocene section of Hole 439. They occur as prismatic and tabular crystals as long as 0.03 mm in various voids of dissolved glass shards, radiolarian shells, calcareous foraminifers, and calcareous algae. They are high in alkalies, especially Na, and in silica varieties. There is a slight difference in composition among them. The Si : (Al+ Fe3+) ratio is highest (4.65) in radiolarian voids, intermediate (4.34) in dissolved glass voids, and lowest (4.26) in voids of calcareous organisms. This difference corresponds to the association of authigenic silica minerals revealed by the scanning electron microscope: There are abundant opal-CT lepispheres in radiolarian voids, low cristobalite and some lepispheres in dissolved glass voids, and a lack of silica minerals in the voids of calcareous organisms. Although it contains some silica from biogenic opal and alkalies from trapped sea water, clinoptilolite derives principally from dissolved glass. Although they are scattered in core samples of Quaternary through lower Miocene diatomaceous and siliceous deposits, acidic glass fragments react with interstitial water to form clinoptilolite only at a sub-bottom depth of 935 meters at approximately 25°C. Analcimes occur in sand-sized clasts of altered acidic vitric tuff in the uppermost Oligocene sandstones. The analcimic tuff clasts were probably reworked from the Upper Cretaceous terrain adjacent to Site 439. Low cristobalite and opal-CT are found in tuffaceous, siliceous mudstone of the middle and lower Miocene sections at Sites 438 and 439. Low cristobalite derives from acidic volcanic glass and opal-CT from biogenic silica. Both siliceous organic remains and acidic glass fragments occur in sediments from the Quaternary through lower Miocene sections. However, the shallowest occurrence is at 700 meters subbottom in Hole 438A, where temperature is estimated to be 21°C. The d(101) spacing of opal-CT varies from 4.09 to 4.11 Å and that of low cristobalite from 4.04 to 4.06 Å. Some opal-CT lepispheres are precipitated onto clinoptilolites in the voids of radiolarian shells at a sub-bottom depth of 950 meters in Hole 439. Sandstone interlaminated with Upper Cretaceous shale is chlorite- calcite cemented and feldspathic. Sandstones in the uppermost Oligocene section are lithic graywacke and consist of large amounts of lithic clasts grouped into older sedimentary and weakly metamorphosed rocks, younger sedimentary rocks, and acidic volcanic rocks. The acidic volcanic clasts probably originated from the volcanic high, which supplied the basal conglomerate with dacite gravels. The older sedimentary and weakly metamorphosed rocks and green rock correspond to the lithologies of the lower Mesozoic to upper Paleozoic Sorachi Group, including the chert, limestone, and slate in south-central Hokkaido. However, the angular shape and coarseness of the clasts and the abundance of carbonate rock fragments indicate a nearby provenance, which is probably the southern offshore extension of the Sorachi Group. The younger sedimentary rocks, including mudstone, carbonaceous shale, and analcime-bearing tuff, correspond to the lithologies of the Upper Cretaceous strata in south-central Hokkaido. Their clasts were reworked from the southern offshore extension of the strata. Because of the discontinuity of the zeolite zoning due to burial diagenesis, an overburden several kilometers thick must have been denuded before the deposition of sediments in the early Oligocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From the equatorial Indian Ocean, carbonate-free portions of sediment samples of Paleocene to Miocene calcareous oozes and chalks from Sites 707, 709, and 711 were studied using X-ray diffraction measurements and the scanning electron microscope. Downhole variations in biogenic opal, quartz, barite, and clinoptilolite were investigated. The abundance patterns of these major mineral phases show several similarities and may be used for additional lithologic correlations. Variations in biogenic opal contents reflect biogenic silica productivity. Beside the general pattern, a succession in biogenic silica decrease through time is generally recorded since the Oligocene. This succession started earliest at northernmost Site 711 and latest at southernmost Site 707, including Site 709 within these two. Opal-A variations as well as the barite distribution may be influenced by the paleoposition of the sites in relation to the high-productivity zone, which today lies south of the equator. Authigenic clinoptilolite apparently formed in two different modes. In deeper sediment intervals, clinoptilolite was the last mineral phase formed associated with enhanced silica diagenesis. In late Oligocene to middle Miocene sediments, clinoptilolite was the only authigenic silica phase encountered where otherwise strong opal dissolution was observed. The sponge spicules showed special dissolution features probably related to microbiological activity. Silica concretions mainly composed of opal-CT and authigenic quartz occur in carbonate-rich environments and are formed during later diagenesis when burial depth causes the sediments to reach higher temperatures. Opal-CT concretions in carbonate-free siliceous oozes were found at Site 711 and are probably formed during an early stage of silica diagenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbonate-free portions of Upper Cretaceous to Holocene sediment samples from the Kerguelen Plateau in the southern Indian Ocean were investigated by X-ray diffraction. Downhole variations in the content of opal-A, opal-CT, quartz, feldspar, barite, and clinoptilolite were studied at Site 737 on the northern Kerguelen Plateau and at Sites 744 and 738 on the southern Kerguelen Plateau. The variation of these components reflects temporal changes in the depositional history of the Kerguelen Plateau as well as major differences in the sedimentary evolution between the northern plateau and the southern plateau. Carbonate is the dominant component in the pelagic sediments on the Kerguelen Plateau. In addition, biogenic opal sedimentation plays an important role throughout most of the sequence. A major increase in opal accumulation is documented at all sites in late Miocene time, which is in accordance with the well-known increase in silica productivity probably caused by a major cooling step. Because of its position near the Polar Frontal Zone, sediments from Site 737 show a more extensive opal deposition than at Sites 744 and 738. An earlier productivity pulse is documented at Site 744 on the southern plateau within the early Oligocene, following the initial phase of intense East Antarctic glaciation. This cooling event resulted in higher amounts of ice-rafted terrigenous quartz and, to a lesser extent, feldspar. With the exception of the Site 744 sediments, opal deposition in Paleogene and older sediments can be reconstructed only from the diagenetic transformation products of opal-CT and probably clinoptilolite. In contrast to the southern sequence, on the northern Kerguelen Plateau higher amounts of clinoptilolite and no opal-CT were found. These major differences in the diagenetic environments may be due to extensive volcanism in the northern area. The volcanic influence at Site 737 is well recorded by the higher feldspar content and higher amounts of volcanic glass shards.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within a dipping sequence of middle Cretaceous to Eocene sediments on Broken Ridge, opal-A, opal-CT, and quartz occur as minor constituents in carbonate and ash-rich sediments. Biogenic opal-A is mainly derived from diatoms and radiolarians. Opal-A and almost all siliceous microfossils disappear within a narrow (<20-m-thick) transition zone below which authigenic opal-CT and quartz are present. These latter silica polymorphs occur together within a 750-m-thick interval, but the ratio of quartz/opal-CT increases with increasing age and depth within the pre-rift sediment sequence. The boundary between opal-A- and opal-CT-bearing sediments is also a physical boundary at which density, P-wave velocity, and acoustic impedance change. This physical transition is probably caused by infilling of pore space by opal-CT lepispheres.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sixty-five chert, porcellanite, and siliceous-chalk samples from Deep Sea Drilling Project Leg 62 were analyzed by petrography, scanning electron microscopy, analysis by energy-dispersive X-rays, X-ray diffraction, X-ray spectroscopy, and semiquantitative emission spectroscopy. Siliceous rocks occur mainly in chalks, but also in pelagic clay and marlstone at Site 464. Overall, chert probably constitutes less than 5% of the sections and occurs in deposits of Eocene to Barremian ages at sub-bottom depths of 10 to 820 meters. Chert nodules and beds are commonly rimmed by quartz porcellanite; opal-CT-rich rocks are minor in Leg 62 sediments 65 to 108 m.y. old and at sub-bottom depths of 65 to 520 meters. Chert ranges from white to black, shades of gray and brown being most common; yellow-brown and red-brown jaspers occur at Site 464. Seventy-eight percent of the studied cherts contain easily recognizable burrow structures. The youngest chert at Site 463 is a quartz cast of a burrow. Burrow silica maturation is always one step ahead of host-rock silicification. Burrows are commonly loci for initial silicification of the host carbonate. Silicification takes place by volume-f or-volume replacement of carbonate sediment, and more-clay-rich sediment at Site 464. Nannofossils are commonly pseudomorphically replaced by quartz near the edges of chert beds and nodules. Other microfossils, mostly radiolarians and foraminifers, whether in chalk or chert, can be either filled with or replaced by calcite, opal-CT, and (or) quartz. Chemical micro-environments ultimately control the removal, transport, and precipitation of calcite and silica. Two cherts from Site 465 contain sulfate minerals replaced by quartz. Site 465 was never subaerially exposed after sedimentation began, and the formation of the sulfate minerals and their subsequent replacement probably occurred in the marine environment. Several other cherts with odd textures are described in this paper, including (1) a chert breccia cemented by colloform opal-CT and chalcedony, (2) a transition zone between white porcellanite containing opal-CT and quartz and a burrowed brown chert, consisting of radial aggregates of opal-CT with hollow centers, and (3) a chert that consists of silica-replaced calcite pseudospherules interspersed with streaks and circular masses of dense quartz. X-ray-diffraction analyses show that when data from all sites are considered there are poorly defined trends indicating that older cherts have better quartz crystallinity than younger ones, and that opal-CT crystallite size increases and opal-CT cf-spacings decrease with depth of occurrence in the sections. In a general way, depth of burial and the presence of calcite promote the ordering in the opal-CT crystal structure which allows its eventual conversion to quartz. Opal-CT in porcellanites converts to quartz after reaching a minimum d-spacing of 4.07 Å. Quartz/opal-CT ratios and quartz crystallinity vary randomly on a fine scale across four chert beds, but quartz crystallinity increases from the edge to the center of a fifth chert bed; this may indicate maturation of the silica. Twenty-four rocks were analyzed for their major- and minor-element compositions. Many elements in cherts are closely related to major mineral components. The carbonate component is distinguished by high values of CaO, MgO, Mn, Ba, Sr, and (for unknown reasons) Zr. Tuffaceous cherts have high values of K and Al, and commonly Zn, Mo, and Cr. Pure cherts are characterized by high SiO2 and B. High B may be a good indicator of formation of chert in an open marine environment, isolated from volcanic and terrigenous materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seventy four samples of DSDP recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. d18O of chert ranges between 27 and 39%. relative to SMOW, d18O of porcellanite - between 30 and 42%. The consistent enrichment of opal-CT in porcellanites in 18O with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases. d18O of deep sea cherts generally decrease with increasing age, indicating an overall cpoling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas and Savin, 1975; http://www.deepseadrilling.org/32/volume/dsdp32_15.pdf) indicates the possibility of d18O in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of d18O values, increasing diagenesis being reflected in a lowering of d18O. Drusy quartz has the lowest d18O values. On-land exposed cherts are consistently depleted in 18O in comparison to their deep sea time equivalent cherts. Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt %. dD of this water ranges between -78 and -95%. and is not a function of d18O of the cherts (or the temperature of their formation).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lithostratigraphy of Neogene hemipelagic sediments recovered from the Japan Sea during Leg 127 was revised to improve intersite consistency and to remove confusion stemming from diagenetic modification of the lithology through the opal-A to opal-CT transformation. Special emphasis was put on the presence and nature of dark-light cycles in revising the lithostratigraphy. Mineral composition analysis was conducted for samples from Sites 794, 795, and 797. In addition, major element chemical composition analysis was conducted for these same sample sets from Site 794. The result of mineral composition analysis suggests that the detrital component, which consists of such minerals as quartz, plagioclase, illite, and kaolinite plus chlorite, is diluted to various degrees by biogenic silica (opal-A) and its diagenetic equivalents (opal-CT and quartz). Smectite, on the other hand, may be a diagenetic or hydrothermal alteration product of volcanic material, although more study is necessary to confirm its origin. As a whole, vertical variation in the sediment composition is consistent with the revised lithostratigraphy and helps to characterize the redefined lithologic units quantitatively.