770 resultados para , Wireless Sensor Network
Resumo:
Low-rate low-power consumption and low-cost communication are the key points that lead to the specification of the IEEE 802.15.4 standard. This paper overviews the technical features of the physical layer and the medium access control sublayer mechanisms of the IEEE 802.15.4 protocol that are most relevant for wireless sensor network applications. We also discuss the ability of IEEE 802.15.4 to fulfil the requirements of wireless sensor network applications.
Resumo:
Secure group communication is a paradigm that primarily designates one-to-many communication security. The proposed works relevant to secure group communication have predominantly considered the whole network as being a single group managed by a central powerful node capable of supporting heavy communication, computation and storage cost. However, a typical Wireless Sensor Network (WSN) may contain several groups, and each one is maintained by a sensor node (the group controller) with constrained resources. Moreover, the previously proposed schemes require a multicast routing support to deliver the rekeying messages. Nevertheless, multicast routing can incur heavy storage and communication overheads in the case of a wireless sensor network. Due to these two major limitations, we have reckoned it necessary to propose a new secure group communication with a lightweight rekeying process. Our proposal overcomes the two limitations mentioned above, and can be applied to a homogeneous WSN with resource-constrained nodes with no need for a multicast routing support. Actually, the analysis and simulation results have clearly demonstrated that our scheme outperforms the previous well-known solutions.
Resumo:
Wireless Sensor Networks (WSN) are being used for a number of applications involving infrastructure monitoring, building energy monitoring and industrial sensing. The difficulty of programming individual sensor nodes and the associated overhead have encouraged researchers to design macro-programming systems which can help program the network as a whole or as a combination of subnets. Most of the current macro-programming schemes do not support multiple users seamlessly deploying diverse applications on the same shared sensor network. As WSNs are becoming more common, it is important to provide such support, since it enables higher-level optimizations such as code reuse, energy savings, and traffic reduction. In this paper, we propose a macro-programming framework called Nano-CF, which, in addition to supporting in-network programming, allows multiple applications written by different programmers to be executed simultaneously on a sensor networking infrastructure. This framework enables the use of a common sensing infrastructure for a number of applications without the users having to worrying about the applications already deployed on the network. The framework also supports timing constraints and resource reservations using the Nano-RK operating system. Nano- CF is efficient at improving WSN performance by (a) combining multiple user programs, (b) aggregating packets for data delivery, and (c) satisfying timing and energy specifications using Rate- Harmonized Scheduling. Using representative applications, we demonstrate that Nano-CF achieves 90% reduction in Source Lines-of-Code (SLoC) and 50% energy savings from aggregated data delivery.
Resumo:
Hexagonal wireless sensor network refers to a network topology where a subset of nodes have six peer neighbors. These nodes form a backbone for multi-hop communications. In a previous work, we proposed the use of hexagonal topology in wireless sensor networks and discussed its properties in relation to real-time (bounded latency) multi-hop communications in large-scale deployments. In that work, we did not consider the problem of hexagonal topology formation in practice - which is the subject of this research. In this paper, we present a decentralized algorithm that forms the hexagonal topology backbone in an arbitrary but sufficiently dense network deployment. We implemented a prototype of our algorithm in NesC for TinyOS based platforms. We present data from field tests of our implementation, collected using a deployment of fifty wireless sensor nodes.
Resumo:
Wireless sensor network (WSN) applications such as patients’ health monitoring in hospitals, location-aware ambient intelligence, industrial monitoring /maintenance or homeland security require the support of mobile nodes or node groups. In many of these applications, the lack of network connectivity is not admissible or should at least be time bounded, i.e. mobile nodes cannot be disconnected from the rest of the WSN for an undefined period of time. In this context, we aim at reliable and real-time mobility support in WSNs, for which appropriate handoff and rerouting decisions are mandatory. This paper1 drafts a mechanism and correspondent heuristics for taking reliable handoff decisions in WSNs. Fuzzy logic is used to incorporate the inherent imprecision and uncertainty of the physical quantities at stake.
Resumo:
Timeliness guarantee is an important feature of the recently standardized IEEE 802.15.4 protocol, turning it quite appealing for Wireless Sensor Network (WSN) applications under timing constraints. When operating in beacon-enabled mode, this protocol allows nodes with real-time requirements to allocate Guaranteed Time Slots (GTS) in the contention-free period. The protocol natively supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTS may be underutilized, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of one GTS by multiple nodes, still guaranteeing that all their (delay, bandwidth) requirements are satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our approach improves the bandwidth utilization as compared to the native explicit allocation mechanism defined in the IEEE 802.15.4 standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons. Finally, an experimental evaluation on a real system that validates our theoretical analysis and demonstrates the implementation of i-GAME is also presented
Resumo:
Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes.
Resumo:
Time-sensitive Wireless Sensor Network (WSN) applications require finite delay bounds in critical situations. This paper provides a methodology for the modeling and the worst-case dimensioning of cluster-tree WSNs. We provide a fine model of the worst-case cluster-tree topology characterized by its depth, the maximum number of child routers and the maximum number of child nodes for each parent router. Using Network Calculus, we derive “plug-and-play” expressions for the endto- end delay bounds, buffering and bandwidth requirements as a function of the WSN cluster-tree characteristics and traffic specifications. The cluster-tree topology has been adopted by many cluster-based solutions for WSNs. We demonstrate how to apply our general results for dimensioning IEEE 802.15.4/Zigbee cluster-tree WSNs. We believe that this paper shows the fundamental performance limits of cluster-tree wireless sensor networks by the provision of a simple and effective methodology for the design of such WSNs.
Resumo:
Disaster management is one of the most relevant application fields of wireless sensor networks. In this application, the role of the sensor network usually consists of obtaining a representation or a model of a physical phenomenon spreading through the affected area. In this work we focus on forest firefighting operations, proposing three fully distributed ways for approximating the actual shape of the fire. In the simplest approach, a circular burnt area is assumed around each node that has detected the fire and the union of these circles gives the overall fire’s shape. However, as this approach makes an intensive use of the wireless sensor network resources, we have proposed to incorporate two in-network aggregation techniques, which do not require considering the complete set of fire detections. The first technique models the fire by means of a complex shape composed of multiple convex hulls representing different burning areas, while the second technique uses a set of arbitrary polygons. Performance evaluation of realistic fire models on computer simulations reveals that the method based on arbitrary polygons obtains an improvement of 20% in terms of accuracy of the fire shape approximation, reducing the overhead in-network resources to 10% in the best case.
Resumo:
Poster presented in 12th European Conference on Wireless Sensor Network (EWSN 2015). 9 to 11, Feb, 2015. Porto, Portugal.
Resumo:
A good system of preventive bridge maintenance enhances the ability of engineers to manage and monitor bridge conditions, and take proper action at the right time. Traditionally infrastructure inspection is performed via infrequent periodical visual inspection in the field. Wireless sensor technology provides an alternative cost-effective approach for constant monitoring of infrastructures. Scientific data-acquisition systems make reliable structural measurements, even in inaccessible and harsh environments by using wireless sensors. With advances in sensor technology and availability of low cost integrated circuits, a wireless monitoring sensor network has been considered to be the new generation technology for structural health monitoring. The main goal of this project was to implement a wireless sensor network for monitoring the behavior and integrity of highway bridges. At the core of the system is a low-cost, low power wireless strain sensor node whose hardware design is optimized for structural monitoring applications. The key components of the systems are the control unit, sensors, software and communication capability. The extensive information developed for each of these areas has been used to design the system. The performance and reliability of the proposed wireless monitoring system is validated on a 34 feet span composite beam in slab bridge in Black Hawk County, Iowa. The micro strain data is successfully extracted from output-only response collected by the wireless monitoring system. The energy efficiency of the system was investigated to estimate the battery lifetime of the wireless sensor nodes. This report also documents system design, the method used for data acquisition, and system validation and field testing. Recommendations on further implementation of wireless sensor networks for long term monitoring are provided.
Resumo:
The proliferation of wireless sensor networks in a large spectrum of applications had been spurered by the rapid advances in MEMS(micro-electro mechanical systems )based sensor technology coupled with low power,Low cost digital signal processors and radio frequency circuits.A sensor network is composed of thousands of low cost and portable devices bearing large sensing computing and wireless communication capabilities. This large collection of tiny sensors can form a robust data computing and communication distributed system for automated information gathering and distributed sensing.The main attractive feature is that such a sensor network can be deployed in remote areas.Since the sensor node is battery powered,all the sensor nodes should collaborate together to form a fault tolerant network so as toprovide an efficient utilization of precious network resources like wireless channel,memory and battery capacity.The most crucial constraint is the energy consumption which has become the prime challenge for the design of long lived sensor nodes.
Resumo:
The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production.This paper describes the application of wireless sensor network for crop monitoring in the paddy fields of kuttand, a region of Kerala, the southern state of India.
Resumo:
In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay
Resumo:
The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the security issues related to wireless sensor networks and suggests some techniques for achieving system security. This paper also discusses a protocol that can be adopted for increasing the security of the transmitted data