226 resultados para (NDVI)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI and their interpretation as a drought index. During 2012 three locations (at Salamanca, Granada and Córdoba) were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 and MODIS of the chosen places. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a reduced cost. By contranst, MODIS images present a much lower spatial resolution (500x500 m). The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions. Acknowledgements. This work was partially supported by ENESA under project P10 0220C-823. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. MTM2009-14621 and i-MATH No. CSD2006-00032 is greatly appreciated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moderate resolution remote sensing data, as provided by MODIS, can be used to detect and map active or past wildfires from daily records of suitable combinations of reflectance bands. The objective of the present work was to develop and test simple algorithms and variations for automatic or semiautomatic detection of burnt areas from time series data of MODIS biweekly vegetation indices for a Mediterranean region. MODIS-derived NDVI 250m time series data for the Valencia region, East Spain, were subjected to a two-step process for the detection of candidate burnt areas, and the results compared with available fire event records from the Valencia Regional Government. For each pixel and date in the data series, a model was fitted to both the previous and posterior time series data. Combining drops between two consecutive points and 1-year average drops, we used discrepancies or jumps between the pre and post models to identify seed pixels, and then delimitated fire scars for each potential wildfire using an extension algorithm from the seed pixels. The resulting maps of the detected burnt areas showed a very good agreement with the perimeters registered in the database of fire records used as reference. Overall accuracies and indices of agreement were very high, and omission and commission errors were similar or lower than in previous studies that used automatic or semiautomatic fire scar detection based on remote sensing. This supports the effectiveness of the method for detecting and mapping burnt areas in the Mediterranean region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a methodology based in a dynamical framework is proposed to incorporate additional sources of information to normalized difference vegetation index (NDVI) time series of agricultural observations for a phenological state estimation application. The proposed implementation is based on the particle filter (PF) scheme that is able to integrate multiple sources of data. Moreover, the dynamics-led design is able to conduct real-time (online) estimations, i.e., without requiring to wait until the end of the campaign. The evaluation of the algorithm is performed by estimating the phenological states over a set of rice fields in Seville (SW, Spain). A Landsat-5/7 NDVI series of images is complemented with two distinct sources of information: SAR images from the TerraSAR-X satellite and air temperature information from a ground-based station. An improvement in the overall estimation accuracy is obtained, especially when the time series of NDVI data is incomplete. Evaluations on the sensitivity to different development intervals and on the mitigation of discontinuities of the time series are also addressed in this work, demonstrating the benefits of this data fusion approach based on the dynamic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proceedings of the 11th Australasian Remote Sensing and Photogrammetry Conference

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Established as a National Park in 1980, Biscayne National Park (BISC) comprises an area of nearly 700 km2 , of which most is under water. The terrestrial portions of BISC include a coastal strip on the south Florida mainland and a set of Key Largo limestone barrier islands which parallel the mainland several kilometers offshore and define the eastern rim of Biscayne Bay. The upland vegetation component of BISC is embedded within an extensive coastal wetland network, including an archipelago of 42 mangrove-dominated islands with extensive areas of tropical hardwood forests or hammocks. Several databases and vegetation maps describe these terrestrial communities. However, these sources are, for the most part, outdated, incomplete, incompatible, or/and inaccurate. For example, the current, Welch et al. (1999), vegetation map of BISC is nearly 10 years old and represents the conditions of Biscayne National Park shortly after Hurricane Andrew (August 24, 1992). As a result, a new terrestrial vegetation map was commissioned by The National Park Service Inventory and Monitoring Program South Florida / Caribbean Network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

v. 46, n. 2, p. 140-148, apr./jun. 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high cost of maize in Kenya is basically driven by East African regional commodity demand forces and agricultural drought. The production of maize, which is a common staple food in Kenya, is greatly affected by agricultural drought. However, calculations of drought risk and impact on maize production in Kenya is limited by the scarcity of reliable rainfall data. The objective of this study was to apply a novel hyperspectral remote sensing method to modelling temporal fluctuations of maize production and prices in five markets in Kenya. SPOT-VEGETATION NDVI time series were corrected for seasonal effects by computing the standardized NDVI anomalies. The maize residual price time series was further related to the NDVI seasonal anomalies using a multiple linear regression modelling approach. The result shows a moderately strong positive relationship (0.67) between residual price series and global maize prices. Maize prices were high during drought periods (i.e. negative NDVI anomalies) and low during wet seasons (i.e. positive NDVI anomalies). This study concludes that NDVI is a good index for monitoring the evolution of maize prices and food security emergency planning in Kenya. To obtain a very strong correlation for the relationship between the wholesale maize price and the global maize price, future research could consider adding other price-driving factors into the regression models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O uso de imagens de satélite é um dos caminhos mais econômicos e representativos do comportamento agrícola de uma propriedade, pois as informações contidas nas imagens orbitais fornecem respostas rápidas, confiáveis e essenciais para o mapeamento eficiente dessas áreas. Dentre as informações obtidas pelas imagens estão os índices de vegetação (IV), geralmente, a vegetação em bom desenvolvimento vegetativo absorve a radiação na região do visível para a realização a fotossíntese. A intensidade da resposta é mais relevante quanto mais desenvolvida estiver a planta, portanto, o IV reflete o estado de desenvolvimento da cultura, bem como a probabilidade de rendimento. Dentre os índices mais utilizados atualmente destaca-se o Índice de Vegetação por Diferença Normalizada (NDVI), bastante utilizado nos estudos de caracterização e monitoramento da vegetação. Possui uma escala de variação linear entre ? 1 e 1, é indicador da quantidade e condição da vegetação, estando ligado diretamente ao tipo, a densidade e umidade da superfície. Huete (1988) propôs uma modificação do NDVI com intuito de minimizar os efeitos da variabilidade, do tipo e densidade da vegetação, criando assim o Índice de Vegetação ajustado ao Solo (SAVI). O objetivo do estudo é espacializar, gerar mapas temáticos, e verificar através dos IV?s as condições de cobertura vegetal dos solos no DITALPI, no ano de 2014, a partir de análises espectrais de imagens do satélite Landsat - 8, sensor OLI e TIRS, utilizando técnicas de sensoriamento remoto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nosso objetivo neste estudo foi avaliar espacialmente, usando geoestatística, a variação do Índice de Vegetação da Diferença Normalizada (NVDI) em dois tipos de sistemas de pastejo: rotacionado e contínuo. A obtenção do NDVI ocorreu por meio de imagens do satélite Landsat 8 de 2013 a 2015, tratadas usando o software ArcGIS 10.3. Os valores de NDVI foram atribuídos a cada pixel (30 x 30 m) da imagem. As datas das imagens foram agrupadas em duas estações, seca (de abril a setembro) e chuvosa (de outubro a março), e os valores de NDVI foram analisados usando estatística descritiva e geoestatística, incluindo análise dos semivariogramas e interpolação por krigagem ordinária em uma grade de 1 x 1 m. Os parâmetros de dependência espacial obtidos pelo ajuste do semivariograma foram utilizados para a interpolação por krigagem ordinária, e os mapas foram elaborados. Houve dependência espacial para o NDVI nos dois sistemas de produção de pecuária, com melhor representação da variabilidade na estação seca de 2013, pois o padrão de variabilidade espacial do semivariograma escalonado indica maior homogeneidade dos dados da área de estudo nessa época em relação às demais. Os mapas resultantes da krigagem permitiram identificar, com maior precisão, a interferência da condição de estresse hídrico no desenvolvimento da pastagem, mais vigorosa no sistema rotacionado. A utilização de NDVI obtido por imagens de satélite Landsat 8 demonstrou potencial para o acompanhamento do vigor da vegetação em áreas de pastagem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pecuária é responsável por mais de 6% do Produto Interno Bruto. Manejos pecuários têm sido estudados para buscar meios mais eficientes de produção. Nosso objetivo neste trabalho foi avaliar o efeito de sistemas pecuários sobre o índice de vegetação Normalized Difference Vegetation Index (NDVI), para indicar os sistemas mais produtivos em temos de forragem. Duas áreas de produção de gado de corte e uma de gado de leite, localizadas na Embrapa Pecuária Sudeste (São Carlos, SP), foram avaliadas no período de abril de 2013 a agosto de 2015. Na área 1, os maiores valores de NDVI ocorreram no sistema integração lavoura-pecuária-floresta em todos os períodos. Os sistemas integrado pecuária-floresta e intensivo apresentaram valores similares, principalmente nos períodos de seca. Nas situações em que a cobertura principal eram as pastagens foi possível, na maior parte do tempo, separar os sistemas mais produtivos (intensivos) do sistema menos vigoroso (extensivo). Na área 2, o sistema intensivo e de alta lotação animal apresentou os maiores valores de índices de vegetação ao longo de todos os períodos avaliados e foi o mais produtivo. Na área 3, os sistemas de produção intensivo em recuperação e intensivo irrigado apresentaram os maior valores de NDVI na maior parte dos período avaliados, o que indica maior produtividade desses sistemas. De acordo com os resultados obtidos, séries temporais de NDVI têm o potencial de discriminar, entre os sistemas pecuários de produção não integrados, os sistemas mais produtivos (intensivos) dos sistemas menos produtivos (extensivos), principalmente nos períodos de seca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to analyze changes in the spectral behavior of the soybean crop through spectral profiles of the vegetation indexes NDVI and GVI, expressed by different physical values such as apparent bi-directional reflectance factor (BRF), surface BRF, and normalized BRF derived from images of the Landsat 5/TM. A soybean area located in Cascavel, Paraná, was monitored by using five images of Landsat 5/TM during the 2004/2005 harvesting season. The images were submitted to radiometric transformation, atmospheric correction and normalization, determining physical values of apparent BRF, surface BRF and normalized BRF. NDVI and GVI images were generated in order to distinguish the soybean biomass spectral response. The treatments showed different results for apparent, surface and normalized BRF. Through the profiles of average NDVI and GVI, it was possible to monitor the entire soybean cycle, characterizing its development. It was also observed that the data from normalized BRF negatively affected the spectral curve of soybean crop, mainly, during the phase of vegetative growth, in the 12-9-2004 image.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remote sensing data are each time more available and can be used to monitor the vegetal development of main agricultural crops, such as the Arabic coffee in Brazil, since that the relationship between spectral and agronomical data be well known. Therefore, this work had the main objective to assess the use of Quickbird satellite images to estimate biophysical parameters of coffee crop. Test area was composed by 25 coffee fields located between the cities of Ribeirão Corrente, Franca and Cristais Paulista (SP), Brazil, and the biophysical parameters used were row and between plants spacing, plant height, LAI, canopy diameter, percentage of vegetation cover, roughness and biomass. Spectral data were the reflectance of four bands of QUICKBIRD and values of four vegetations indexes (NDVI, GVI, SAVI and RVI) based on the same satellite. All these data were analyzed using linear and nonlinear regression methods to generate estimation models of biophysical parameters. The use of regression models based on nonlinear equations was more appropriate to estimate parameters such as the LAI and the percentage of biomass, important to indicate the productivity of coffee crop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this work was to evaluate the linear regression between spectral response and soybean yield in regional scale. In this study were monitored 36 municipalities from the west region of the states of Parana using five images of Landsat 5/TM during 2004/05 season. The spectral response was converted in physical values, apparent and surface reflectances, by radiometric transformation and atmospheric corrections and both used to calculate NDVI and GVI vegetation indices. Those ones were compared by multiple and simple regression with government official yield values (IBGE). Diagnostic processing method to identify influents values or collinearity was applied to the data too. The results showed that the mean surface reflectance value from all images was more correlated with yield than individual dates. Further, the multiple regressions using all dates and both vegetation indices gave better results than simple regression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In Brazil, 99% of malaria cases are concentrated in the Amazon, and malaria's spatial distribution is commonly associated with socio-environmental conditions on a fine landscape scale. In this study, the spatial patterns of malaria and its determinants in a rural settlement of the Brazilian agricultural reform programme called ""Vale do Amanhecer"" in the northern Mato Grosso state were analysed. Methods: In a fine-scaled, exploratory ecological study, geocoded notification forms corresponding to malaria cases from 2005 were compared with spectral indices, such as the Normalized Difference Vegetation Index (NDVI) and the third component of the Tasseled Cap Transformation (TC_3) and thematic layers, derived from the visual interpretation of multispectral TM-Landsat 5 imagery and the application of GIS distance operators. Results: Of a total of 336 malaria cases, 102 (30.36%) were caused by Plasmodium falciparum and 174 (51.79%) by Plasmodium vivax. Of all the cases, 37.6% (133 cases) were from residents of a unique road. In total, 276 cases were reported for the southern part of the settlement, where the population density is higher, with notification rates higher than 10 cases per household. The local landscape mostly consists of open areas (38.79 km(2)). Training forest occupied 27.34 km(2) and midsize vegetation 7.01 km(2). Most domiciles with more than five notified malaria cases were located near areas with high NDVI values. Most domiciles (41.78%) and malaria cases (44.94%) were concentrated in areas with intermediate values of the TC_3, a spectral index representing surface and vegetation humidity. Conclusions: Environmental factors and their alteration are associated with the occurrence and spatial distribution of malaria cases in rural settlements.