860 resultados para wireless network solutions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmission expansion planning (TEP) is a classic problem in electric power systems. In current optimization models used to approach the TEP problem, new transmission lines and two-winding transformers are commonly used as the only candidate solutions. However, in practice, planners have resorted to non-conventional solutions such as network reconfiguration and/or repowering of existing network assets (lines or transformers). These types of non-conventional solutions are currently not included in the classic mathematical models of the TEP problem. This paper presents the modeling of necessary equations, using linear expressions, in order to include non-conventional candidate solutions in the disjunctive linear model of the TEP problem. The resulting model is a mixed integer linear programming problem, which guarantees convergence to the optimal solution by means of available classical optimization tools. The proposed model is implemented in the AMPL modeling language and is solved using CPLEX optimizer. The Garver test system, IEEE 24-busbar system, and a Colombian system are used to demonstrate that the utilization of non-conventional candidate solutions can reduce investment costs of the TEP problem. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless LAN technology, despite the numerous advantages it has over competing technologies, has not seen widespread deployment. A primary reason for markets not adopting this technology is its failure to provide adequate security. Data that is sent over wireless links can be compromised with utmost ease. In this project, we propose a distributed agent based intrusion detection and response system for wireless LANs that can detect unauthorized wireless elements like access points, wireless clients that are in promiscuous mode etc. The system reacts to intrusions by either notifying the concerned personnel, in case of rogue access points and promiscuous nodes, or by blocking unauthorized users from accessing the network resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key management is a core mechanism to ensure the security of applications and network services in wireless sensor networks. It includes two aspects: key distribution and key revocation. Many key management protocols have been specifically designed for wireless sensor networks. However, most of the key management protocols focus on the establishment of the required keys or the removal of the compromised keys. The design of these key management protocols does not consider the support of higher level security applications. When the applications are integrated later in sensor networks, new mechanisms must be designed. In this paper, we propose a security framework, uKeying, for wireless sensor networks. This framework can be easily extended to support many security applications. It includes three components: a security mechanism to provide secrecy for communications in sensor networks, an efficient session key distribution scheme, and a centralized key revocation scheme. The proposed framework does not depend on a specific key distribution scheme and can be used to support many security applications, such as secure group communications. Our analysis shows that the framework is secure, efficient, and extensible. The simulation and results also reveal for the first time that a centralized key revocation scheme can also attain a high efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a Layered Clustering Hierarchy (LCH) communication protocol for Wireless Sensor Networks (WSNs). The design of LCH has two goals: scalability and energy-efficiency. In LCH, the sensor nodes are organized as a layered clustering structure. Each layer runs a distributed clustering protocol. By randomizing the rotation of cluster heads in each layer, the energy load is distributed evenly across sensors in the network. Our simulations show that LCH is effective in densely deployed sensor networks. On average, 70% of live sensor nodes are involved directly in the clustering communication hierarchy. Moreover, the simulations also show that the energy load and dead nodes are distributed evenly over the network. As studies prove that the performance of LCH depends mainly on the distributed clustering protocol, the location of cluster heads and cluster size are two critical factors in the design of LCH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key management is a core mechanism to ensure the security of applications and network services in wireless sensor networks. It includes two aspects: key distribution and key revocation. Key distribution has been extensively studied in the context of sensor networks. However, key revocation has received relatively little attention. Existing key revocation schemes can be divided into two categories: centralized key revocation scheme and distributed key revocation scheme. In this paper, we first summarize the current key revocation schemes for sensor networks. Then, we propose an efficient centralized key revocation scheme, KeyRev, for wireless sensor networks. Unlike most proposed key revocation schemes focusing on removing the compromised keys, we propose to use key updating techniques to obsolesce the keys owned by the compromised sensor nodes and thus remove the nodes from the network. Our analyses show that the KeyRev scheme is secure inspite of not removing the pre-distributed key materials at compromised sensor nodes. Simulation results also indicate that the KeyRev scheme is scalable and performs very well in wireless sensor networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks are promising solutions for many applications. However, wireless sensor nodes suffer from many constraints such as low computation capability, small memory, limited energy resources, and so on. Grouping is an important technique to localize computation and reduce communication overhead in wireless sensor networks. In this paper, we use grouping to refer to the process of combining a set of sensor nodes with similar properties. We propose two centralized group rekeying (CGK) schemes for secure group communication in sensor networks. The lifetime of a group is divided into three phases, i.e., group formation, group maintenance, and group dissolution. We demonstrate how to set up the group and establish the group key in each phase. Our analysis shows that the proposed two schemes are computationally efficient and secure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a Loss Tolerant Reliable (LTR) data transport mechanism for dynamic Event Sensing (LTRES) in WSNs. In LTRES, a reliable event sensing requirement at the transport layer is dynamically determined by the sink. A distributed source rate adaptation mechanism is designed, incorporating a loss rate based lightweight congestion control mechanism, to regulate the data traffic injected into the network so that the reliability requirement can be satisfied. An equation based fair rate control algorithm is used to improve the fairness among the LTRES flows sharing the congestion path. The performance evaluations show that LTRES can provide LTR data transport service for multiple events with short convergence time, low lost rate and high overall bandwidth utilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the proposed key management protocols for wireless sensor networks (WSNs) in the literature assume that a single base station is used and that the base station is trustworthy. However, there are applications in which multiple base stations are used and the security of the base stations must be considered. This paper investigates a key management protocol in wireless sensor networks which include multiple base stations. We consider the situations in which both the base stations and the sensor nodes can be compromised. The proposed key management protocol, mKeying, includes two schemes, a key distribution scheme, mKeyDist, supporting multiple base stations in the network, and a key revocation scheme, mKeyRev, used to efficiently remove the compromised nodes from the network. Our analyses show that the proposed protocol is efficient and secure against the compromise of the base stations and the sensor nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a cross-layer solution for packet size optimization in wireless sensor networks (WSN) is introduced such that the effects of multi-hop routing, the broadcast nature of the physical wireless channel, and the effects of error control techniques are captured. A key result of this paper is that contrary to the conventional wireless networks, in wireless sensor networks, longer packets reduce the collision probability. Consequently, an optimization solution is formalized by using three different objective functions, i.e., packet throughput, energy consumption, and resource utilization. Furthermore, the effects of end-to-end latency and reliability constraints are investigated that may be required by a particular application. As a result, a generic, cross-layer optimization framework is developed to determine the optimal packet size in WSN. This framework is further extended to determine the optimal packet size in underwater and underground sensor networks. From this framework, the optimal packet sizes under various network parameters are determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a general scheme for generating extra cuts during the execution of a Benders decomposition algorithm is presented. These cuts are based on feasible and infeasible master problem solutions generated by means of a heuristic. This article includes general guidelines and a case study with a fixed charge network design problem. Computational tests with instances of this problem show the efficiency of the strategy. The most important aspect of the proposed ideas is their generality, which allows them to be used in virtually any Benders decomposition implementation.