813 resultados para virtual learning community
Resumo:
Second Life (SL) is an ideal platform for language learning. It is called a Multi-User Virtual Environment, where users can have varieties of learning experiences in life-like environments. Numerous attempts have been made to use SL as a platform for language teaching and the possibility of SL as a means to promote conversational interactions has been reported. However, the research so far has largely focused on simply using SL without further augmentations for communication between learners or between teachers and learners in a school-like environment. Conversely, not enough attention has been paid to its controllability which builds on the embedded functions in SL. This study, based on the latest theories of second language acquisition, especially on the Task Based Language Teaching and the Interaction Hypothesis, proposes to design and implement an automatized interactive task space (AITS) where robotic agents work as interlocutors of learners. This paper presents a design that incorporates the SLA theories into SL and the implementation method of the design to construct AITS, fulfilling the controllability of SL. It also presents the result of the evaluation experiment conducted on the constructed AITS.
Resumo:
Three-dimensional (3D) immersive virtual worlds have been touted as being capable of facilitating highly interactive, engaging, multimodal learning experiences. Much of the evidence gathered to support these claims has been anecdotal but the potential that these environments hold to solve traditional problems in online and technology-mediated education—primarily learner isolation and student disengagement—has resulted in considerable investments in virtual world platforms like Second Life, OpenSimulator, and Open Wonderland by both professors and institutions. To justify this ongoing and sustained investment, institutions and proponents of simulated learning environments must assemble a robust body of evidence that illustrates the most effective use of this powerful learning tool. In this authoritative collection, a team of international experts outline the emerging trends and developments in the use of 3D virtual worlds for teaching and learning. They explore aspects of learner interaction with virtual worlds, such as user wayfinding in Second Life, communication modes and perceived presence, and accessibility issues for elderly or disabled learners. They also examine advanced technologies that hold potential for the enhancement of learner immersion and discuss best practices in the design and implementation of virtual world-based learning interventions and tasks. By evaluating and documenting different methods, approaches, and strategies, the contributors to Learning in Virtual Worlds offer important information and insight to both scholars and practitioners in the field. AU Press is an open access publisher and the book is available for free in PDF format as well as for purchase on our website: http://bit.ly/1W4yTRA
Resumo:
BACKGROUND Currently only a few reports exist on how to prepare medical students for skills laboratory training. We investigated how students and tutors perceive a blended learning approach using virtual patients (VPs) as preparation for skills training. METHODS Fifth-year medical students (N=617) were invited to voluntarily participate in a paediatric skills laboratory with four specially designed VPs as preparation. The cases focused on procedures in the laboratory using interactive questions, static and interactive images, and video clips. All students were asked to assess the VP design. After participating in the skills laboratory 310 of the 617 students were additionally asked to assess the blended learning approach through established questionnaires. Tutors' perceptions (N=9) were assessed by semi-structured interviews. RESULTS From the 617 students 1,459 VP design questionnaires were returned (59.1%). Of the 310 students 213 chose to participate in the skills laboratory; 179 blended learning questionnaires were returned (84.0%). Students provided high overall acceptance ratings of the VP design and blended learning approach. By using VPs as preparation, skills laboratory time was felt to be used more effectively. Tutors perceived students as being well prepared for the skills laboratory with efficient uses of time. CONCLUSION The overall acceptance of the blended learning approach was high among students and tutors. VPs proved to be a convenient cognitive preparation tool for skills training.
Resumo:
Up to 15 people can participate in the game, which is supervised by a moderator. Households consisting of 1-5 people discuss options for diversification of household strategies. Aim of the game: By devising appropriate strategies, households seek to stand up to various types of events while improving their economic and social situation and, at the same time, taking account of ecological conditions. The annual General Community Meeting (GCM) provides an opportunity for households to create a general set-up at the local level that is more or less favourable to the strategies they are pursuing. The development of a community investment strategy, to be implemented by the GCM, and successful coordination between households will allow players to optimise their investments at the household level. The household who owns the most assets at the end of the game wins. Players participate very actively, as the game stimulates lively and interesting discussions. They find themselves confronted with different types of decision-making related to the reality of their daily lives. They explore different ways to model their own household strategies and discuss risks and opportunities. Reflections on the course of the game continually refer to the real-life situations of the participants.
Resumo:
BACKGROUND E-learning and blended learning approaches gain more and more popularity in emergency medicine curricula. So far, little data is available on the impact of such approaches on procedural learning and skill acquisition and their comparison with traditional approaches. OBJECTIVE This study investigated the impact of a blended learning approach, including Web-based virtual patients (VPs) and standard pediatric basic life support (PBLS) training, on procedural knowledge, objective performance, and self-assessment. METHODS A total of 57 medical students were randomly assigned to an intervention group (n=30) and a control group (n=27). Both groups received paper handouts in preparation of simulation-based PBLS training. The intervention group additionally completed two Web-based VPs with embedded video clips. Measurements were taken at randomization (t0), after the preparation period (t1), and after hands-on training (t2). Clinical decision-making skills and procedural knowledge were assessed at t0 and t1. PBLS performance was scored regarding adherence to the correct algorithm, conformance to temporal demands, and the quality of procedural steps at t1 and t2. Participants' self-assessments were recorded in all three measurements. RESULTS Procedural knowledge of the intervention group was significantly superior to that of the control group at t1. At t2, the intervention group showed significantly better adherence to the algorithm and temporal demands, and better procedural quality of PBLS in objective measures than did the control group. These aspects differed between the groups even at t1 (after VPs, prior to practical training). Self-assessments differed significantly only at t1 in favor of the intervention group. CONCLUSIONS Training with VPs combined with hands-on training improves PBLS performance as judged by objective measures.
Resumo:
The medical education community is working-across disciplines and across the continuum-to address the current challenges facing the medical education system and to implement strategies to improve educational outcomes. Educational technology offers the promise of addressing these important challenges in ways not previously possible. The authors propose a role for virtual patients (VPs), which they define as multimedia, screen-based interactive patient scenarios. They believe VPs offer capabilities and benefits particularly well suited to addressing the challenges facing medical education. Well-designed, interactive VP-based learning activities can promote the deep learning that is needed to handle the rapid growth in medical knowledge. Clinically oriented learning from VPs can capture intrinsic motivation and promote mastery learning. VPs can also enhance trainees' application of foundational knowledge to promote the development of clinical reasoning, the foundation of medical practice. Although not the entire solution, VPs can support competency-based education. The data created by the use of VPs can serve as the basis for multi-institutional research that will enable the medical education community both to better understand the effectiveness of educational interventions and to measure progress toward an improved system of medical education.
Resumo:
The project outlined throughout this program management plan aims to develop a health-focused student advocacy group in the San Antonio Independent School District (SAISD). At its core, this project will be an opportunity for SAISD students to engage in service-learning, through which they will learn and develop by designing, organizing and participating in meaningful public health service experiences. ^ This program management plan addresses the genuine need for public health community education by using the service-learning model as a framework to engage students to effect change. The plan delineates the process by which the student advocacy group is to be assembled, selection of service-learning project, project objectives, technical objectives, and communication requirements. Ideally, the plan should help to facilitate project coordination, communication, and planning, and to support the direction of resources. The appendices that follow also provide useful tools with which to follow through with project implementation. ^ The plan is about more than providing a tool to educate students about the health issues in their community. It is about providing a way to teach health advocacy and self-interest and encourage civic engagement via public health. Students have the potential to positively effect lasting change among their peers, in their schools and in the community.^
Resumo:
This communication presents the results of an innovative approach for competencedevelopment suggesting a new methodology for the integration of these elements in professional development within the ADA initiative (AulaaDistanciaAbierta, Distance and Open Classroom) of the Community of Madrid. The main objective of this initiative is to promote the use of Information and Communication Technologies (ICTs) for educational activities by creating a new learning environment structured on the premises of commitment to self–learning, individual work, communication and virtual interaction, and self and continuous assessment. Results from this experience showed that conceptualization is a positive contribution to learning, as students added names and characteristics to competences and abilities that were previously unknown or underestimated. Also, the diversity of participants’ disciplines indicated multidimensional interest in this idea and supported the theory that this approach to competencedevelopment could be successful in all knowledge areas.
Resumo:
In the educational project described in this paper, new virtual 3D didactical contents have been developed to achieve specific outcomes, within the frame of a new methodology oriented to objectives of the European Higher Education Area directives. The motivation of the project was to serve as a new assessment method, to create a link between new programs of study with the older ones. In this project, new rubrics have been developed to be employed as an objective method of evaluation of specific and transversal outcomes, to accomplish the certification criteria of institutions like ABET (Accreditation Board for Engineering and Technology).
Resumo:
The educational platform Virtual Science Hub (ViSH) has been developed as part of the GLOBAL excursion European project. ViSH (http://vishub.org/) is a portal where teachers and scientist interact to create virtual excursions to science infrastructures. The main motivation behind the project was to connect teachers - and in consequence their students - to scientific institutions and their wide amount of infrastructures and resources they are working with. Thus the idea of a hub was born that would allow the two worlds of scientists and teachers to connect and to innovate science teaching. The core of the ViSH?s concept design is based on virtual excursions, which allow for a number of pedagogical models to be applied. According to our internal definition a virtual excursion is a tour through some digital context by teachers and pupils on a given topic that is attractive and has an educational purpose. Inquiry-based learning, project-based and problem-based learning are the most prominent approaches that a virtual excursion may serve. The domain specific resources and scientific infrastructures currently available on the ViSH are focusing on life sciences, nano-technology, biotechnology, grid and volunteer computing. The virtual excursion approach allows an easy combination of these resources into interdisciplinary teaching scenarios. In addition, social networking features support the users in collaborating and communicating in relation to these excursions and thus create a community of interest for innovative science teaching. The design and development phases were performed following a participatory design approach. An important aspect in this process was to create design partnerships amongst all actors involved, researchers, developers, infrastructure providers, teachers, social scientists, and pedagogical experts early in the project. A joint sense of ownership was created and important changes during the conceptual phase were implemented in the ViSH due to early user feedback. Technology-wise the ViSH is based on the latest web technologies in order to make it cross-platform compatible so that it works on several operative systems such as Windows, Mac or Linux and multi-device accessible, such as desktop, tablet and mobile devices. The platform has been developed in HTML5, the latest standard for web development, assuring that it can run on any modern browser. In addition to social networking features a core element on the ViSH is the virtual excursions editor. It is a web tool that allows teachers and scientists to create rich mash-ups of learning resources provided by the e-Infrastructures (i.e. remote laboratories and live webcams). These rich mash-ups can be presented in either slides or flashcards format. Taking advantage of the web architecture supported, additional powerful components have been integrated like a recommendation engine to provide personalized suggestions about educational content or interesting users and a videoconference tool to enhance real-time collaboration like MashMeTV (http://www.mashme.tv/).
Resumo:
El presente Proyecto de Fin de Carrera supone el propósito conjunto de los alumnos Álvaro Morillas y Fernando Sáez, y del profesor Vladimir Ulin, de desarrollar una unidad didáctica sobre el programa de simulación para ingeniería Virtual.Lab. La versión sobre la que se ha trabajado para realizar este texto es la 11, publicada en agosto de 2012. Virtual.Lab, del fabricante belga LMS International, es una plataforma software de ingeniería asistida por ordenador, que agrupa en una misma aplicación varias herramientas complementarias en el diseño de un producto, desde su definición geométrica a los análisis de durabilidad, ruido u optimización. No obstante, de entre todas las posibles simulaciones que nos permite el programa, en este proyecto sólo se tratan las que están relacionadas con la acústica. Cabe resaltar que gran parte de los conceptos manejados en Virtual.Lab son compatibles con el programa CATIA V5, ya que ambos programas vienen instalados y funcionan conjuntamente. Por eso, el lector de este proyecto podrá transportar sus conocimientos al que es uno de los programas estándar en las industrias aeronáutica, naval y automovilística, entre otras. Antes de este proyecto, otros alumnos de la escuela también realizaron proyectos de fin de carrera en el campo de la simulación computarizada en acústica. Una característica común a estos trabajos es que era necesario hacer uso de distintos programas para cada una de las etapas de simulación (como por ejemplo, ANSYS para el modelado y estudio de la vibración y SYSNOISE para las simulaciones acústicas, además de otros programas auxiliares para las traducciones de formato). Con Virtual.Lab desaparece esta necesidad y el tiempo empleado se reduce. Debido a que las soluciones por ordenador están ganando cada vez más importancia en la industria actual, los responsables de este proyecto consideran la necesidad de formación de profesionales en esta rama. Para responder a la demanda empresarial de trabajadores cualificados, se espera que en los próximos años los planes de estudio contengan más cursos en esta materia. Por tanto la intención de los autores es que este material sea de utilidad para el aprendizaje y docencia de estas asignaturas en cursos sucesivos. Por todo esto, se justifica la relevancia de este PFC como manual para introducir a los alumnos interesados en iniciarse en un sistema actual, de uso extendido en otras universidades tecnológicas europeas, y con buenas perspectivas de futuro. En este proyecto se incluyen varios ejemplos ejecutables desde el programa, así como vídeos explicativos que ayudan a mostrar gráficamente los procesos de simulación. Estos archivos se pueden encontrar en el CD adjunto. Abstract This final thesis is a joint project made by the students Álvaro Morillas and Fernando Sáez, and the professor Vladimir Ulin. The nature of the joint regards the writing of a didactic unit on Virtual.Lab, the simulation software. The software version used in this text is the number 11, released in August 2012. Virtual.Lab, from the Belgian developer LMS International, is a computer-aided engineering software which is used for several related tasks in this field: product design, durability simulation, optimization, etc. However, this project is focused on the acoustical capabilities. It is worthy to highlight that most procedures explained in this text can be used in the software CATIA V5 as well. Both tools come installed together and may be used at the same time. Therefore, the reader of this project will be able to use the acquired knowledge in one of the most relevant softwares for the aerospace, marine and automotive engineering. Previously to the development of this project, this School has conducted projects on this field. These projects regarded the use of ANSYS for modeling and meshing stages as well as the use of SYSNOISE for the final acoustic analysis. Since both systems use different file formats, a third-party translation software was required. This thesis fulfill this pending necessity with Virtual.Lab; the translation software procedure is not necessary anymore and simulations can be done in a more flexible, fast way. Since companies have an increasing usage of numerical methods in the development of their products and services, the authors think that it is important to develop the appropriate method to instruct new professionals in the field. Thus, the aim of this project is to help teachers and students in their process of learning the use of this leading software in acoustical simulations. For all the reasons mentioned above, we consider that this project is relevant for the School and the educational community. Aiming to achieve this objective the author offers example files and video demonstrations with guidance in the CD that accompanies this material. This facilitates the comprehension of the practical tasks and guides the prospect users of the software.
Resumo:
Una de las maneras más efectivas para asentar conocimientos se produce cuando, además de realizar un aprendizaje práctico, se intentan transmitir a otra persona. De hecho, los alumnos muchas veces prestan más atención a sus compañeros que al profesor. En la E.T.S.I. Minas de Madrid se ha llevado a cabo un programa de innovación educativa en asignaturas relacionadas con la Geología mediante nuevas tecnologías para mejorar el aprendizaje basado en el trabajo práctico personal del alumno, con la realización de vídeos en el medio físico (campo) en los que explican los aspectos geológicos visibles a diferentes escalas. Estos vídeos se han subido a las plataformas “moodle”, “facebook” y canal “youtube” donde compañeros, alumnos de otras Universidades y personas interesadas pueden consultarlos. De esta manera se pretende que, además de adquirir conocimientos geológicos, los alumnos adquieren el hábito de expresarse en público con un lenguaje técnico. Los alumnos manifestaron su satisfacción por esta actividad, aunque idea del rodaje de vídeos no resultó inicialmente muy popular. Se ha observado una mejora en las calificaciones, así como un incremento de la motivación. De hecho, los estudiantes manifestaron haber adquirido, además de los conceptos geológicos, seguridad a la hora de expresarse en público. Palabras clave: innovación educativa, nuevas tecnologías (TIC), Geología Abstract- Knowledge is gained by practice, but one of the most effective ways is when one tries to transmit it to others. Likewise, students pay more attention to their classmates than to teachers. In the Geological Engineering Department of the Madrid School of Mines, we have run an educational innovation program in courses related to Geology using new technologies (ITC) in order to increase the acquisition of geological knowledge. This program is designed mainly on the basis of individual and group work with video recordings in the field in which students explain geological concepts at various scales. These videos have been uploaded to the “Moodle”, “Facebook” and “YouTube” channel of the Madrid School of Mines, where other students from the same university or elsewhere can view them. Students acquire geological knowledge and the ability to address the general public using technical language. The realization of these videos has been warmly welcomed by students. Notably, they show increased motivation, accompanied by an improvement in grades, although at the beginning this program was not very popular because of student insecurity. Students have expressed that they learnt geological concepts but also gained confidence in public speaking using technical language
Resumo:
El campo de estudio relacionado con los laboratorios remotos en el ámbito educativo de las ciencias y la ingeniería está sufriendo una notable expansión ante la necesidad de adaptar los procesos de aprendizaje en dichas áreas a las características y posibilidades de la formación online. Muchos de los recursos educativos basados en esta tecnología, existentes en la actualidad, presentan ciertas limitaciones que impiden alcanzar las competencias que se deben adquirir en los laboratorios de ingeniería. Estas limitaciones están relacionadas con diferentes aspectos de carácter técnico y formativo. A nivel técnico las limitaciones principales se centran en el grado de versatilidad que son capaces de proporcionar comparado con el que se dispone en un laboratorio tradicional y en el modo de interacción del usuario, que provoca que el estudiante no distinga claramente si está realizando acciones sobre sistemas reales o simulaciones. A nivel formativo las limitaciones detectadas son relevantes para poder alcanzar un aprendizaje significativo. En concreto están relacionadas principalmente con un escaso sentimiento de inmersión, una reducida sensación de realismo respecto a las operaciones que se realizan o la limitada posibilidad de realizar actividades de forma colaborativa. La aparición de nuevas tecnologías basadas en entornos inmersivos, unida a los avances producidos relacionados con el aumento de la capacidad gráfica de los ordenadores y del ancho de banda de acceso a Internet, han hecho factible que las limitaciones comentadas anteriormente puedan ser superadas gracias al desarrollo de nuevos recursos de aprendizaje surgidos de la fusión de laboratorios remotos y mundos virtuales 3D. Esta tesis doctoral aborda un trabajo de investigación centrado en proponer un modelo de plataformas experimentales, basado en la fusión de las dos tecnologías mencionadas, que permita generar recursos educativos online que faciliten la adquisición de competencias prácticas similares a las que se consiguen en un laboratorio tradicional vinculado a la enseñanza de la electrónica. El campo de aplicación en el que se ha focalizado el trabajo realizado se ha centrado en el área de la electrónica aunque los resultados de la investigación realizada se podrían adaptar fácilmente a otras disciplinas de la ingeniería. Fruto del trabajo realizado en esta tesis es el desarrollo de la plataforma eLab3D, basada en el modelo de plataformas experimentales propuesto, y la realización de dos estudios empíricos llevados a cabo con estudiantes de grado en ingeniería, muy demandados por la comunidad investigadora. Por un lado, la plataforma eLab3D, que permite llevar a cabo de forma remota actividades prácticas relacionadas con el diseño, montaje y prueba de circuitos electrónicos analógicos, aporta como novedad un dispositivo hardware basado en un sistema de conmutación distribuido. Dicho sistema proporciona un nivel de versatilidad muy elevado, a nivel de configuración de circuitos y selección de puntos de medida, que hace posible la realización de acciones similares a las que se llevan a cabo en los laboratorios presenciales. Por otra parte, los estudios empíricos realizados, que comparaban la eficacia educativa de una metodología de aprendizaje online, basada en el uso de la plataforma eLab3D, con la conseguida siguiendo una metodología clásica en los laboratorios tradicionales, mostraron que no se detectaron diferencias significativas en el grado de adquisición de los resultados de aprendizaje entre los estudiantes que utilizaron la plataforma eLab3D y los que asistieron a los laboratorios presenciales. Por último, hay que destacar dos aspectos relevantes relacionados directamente con esta tesis. En primer lugar, los resultados obtenidos en las experiencias educativas llevadas a cabo junto a valoraciones obtenidas por el profesorado que ha colaborado en las mismas han sido decisivos para que la plataforma eLab3D se haya integrado como recurso complementario de aprendizaje en titulaciones de grado de ingeniería de la Universidad Politécnica de Madrid. En segundo lugar, el modelo de plataformas experimentales que se ha propuesto en esta tesis, analizado por investigadores vinculados a proyectos en el ámbito de la fusión nuclear, ha sido tomado como referencia para generar nuevas herramientas de formación en dicho campo. ABSTRACT The field of study of remote laboratories in sciences and engineering educational disciplines is undergoing a remarkable expansion given the need to adapt the learning processes in the aforementioned areas to the characteristics and possibilities of online education. Several of the current educational resources based on this technology have certain limitations that prevent from reaching the required competencies in engineering laboratories. These limitations are related to different aspects of technical and educational nature. At the technical level, they are centered on the degree of versatility they are able to provide compared to a traditional laboratory and in the way the user interacts with them, which causes the student to not clearly distinguish if actions are being performed over real systems or over simulations. At the educational level, the detected limitations are relevant in order to reach a meaningful learning. In particular, they are mainly related to a scarce immersion feeling, a reduced realism sense regarding the operations performed or the limited possibility to carry out activities in a collaborative way. The appearance of new technologies based on immersive environments, together with the advances in graphical computer capabilities and Internet bandwidth access, have made the previous limitations feasible to be overcome thanks to the development of new learning resources that arise from merging remote laboratories and 3D virtual worlds. This PhD thesis tackles a research work focused on the proposal of an experimental platform model, based on the fusion of both mentioned technologies, which allows for generating online educational resources that facilitate the acquisition of practical competencies similar to those obtained in a traditional electronics laboratory. The application field, in which this work is focused, is electronics, although the research results could be easily adapted to other engineering disciplines. A result of this work is the development of eLab3D platform, based on the experimental platform model proposed, and the realization of two empirical studies with undergraduate students, highly demanded by research community. On one side, eLab3D platform, which allows to accomplish remote practical activities related to the design, assembling and test of analog electronic circuits, provides, as an original contribution, a hardware device based on a distributed switching system. This system offers a high level of versatility, both at the circuit configuration level and at the selection of measurement points, which allows for doing similar actions to those conducted in hands-on laboratories. On the other side, the empirical studies carried out, which compare the educational efficiency of an online learning methodology based on the use of eLab3D platform with that obtained following a classical methodology in traditional laboratories, shows that no significant differences in the acquired degree of learning outcomes among the students that used eLab3D platform and those that attended hands-on laboratories were detected. Finally, it is important to highlight two relevant aspects directly related with this thesis work. First of all, the results obtained in the educational experiences conducted, along with the assessment from the faculty that has collaborated in them, have been decisive to integrate eLab3D platform as a supplementary learning resource in engineering degrees at Universidad Politecnica de Madrid. Secondly, the experimental platform model originally proposed in this thesis, which has been analysed by nuclear fusion researchers, has been taken as a reference to generate new educational tools in that field.