799 resultados para upregulation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Preconditioning-induced ischemic tolerance has been documented in the newborn brain, however, the signaling mechanisms of this preconditioning require further elucidation. The aims of this study were to develop a hypoxic-preconditioning (PC) model of ischemic tolerance in the newborn piglet, which emulates important clinical similarities to human situation of birth asphyxia, and to characterize some of the molecular mechanisms shown to be implicated in PC-induced neuroprotection in rodent models. One day old piglets were subjected to PC (8% O(2)/92% N(2)) for 3 h and 24 h later were exposed to hypoxia-ischemia (HI) produced by a combination of hypoxia (5% FiO(2)) for a period of 30 min and ischemia induced by a period of hypotension (10 min of reduced mean arterial blood pressure; 70% of baseline). Neuropathologic analysis and unbiased stereology, conducted at 24 h, 3 and 7 days of recovery following HI, indicated a substantial reduction in the severity of brain damage in PC piglets compared to non-PC piglets (P<0.05). PC significantly increased the mRNA expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) and its target gene, vascular endothelial growth factor (VEGF) at 0 h, 6 h, 24 h, 3 and 7 days of recovery. Immunoblot analysis demonstrated that PC resulted in HIF-1 alpha protein stabilization and accumulation in nuclear extracts of cerebral cortex of newborn piglet brain compared to normoxic controls. Protein levels of VEGF increased in a time-dependent manner in both cortex and hippocampus following PC. Double-immunolabeling indicated that VEGF is mainly expressed in neurons, endothelial cells and astroglia. Our study demonstrates for the first time the protective efficacy of PC against hypoxic-ischemic injury in newborn piglet model, which recapitulates many pathophysiological features of asphyxiated human neonates. Furthermore, as has been shown in rodent models of preconditioning, our results suggest that PC-induced protection in neonatal piglets may involve upregulation of VEGF. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Insecticide resistance in laboratory selected Drosophila strains has been associated with upregulation of a range of different cytochrome P450s, however in recent field isolates of D. melanogaster resistance to DDT and other compounds is conferred by one P450 gene, Cyp6g1. Using microarray analysis of all Drosophila P450 genes, here we show that different P450 genes such as Cyp12d1 and Cyp6a8 can also be selected using DDT in the laboratory. We also show, however, that a homolog of Cyp6g1 is over-expressed in a field resistant strain of D. simulans. In order to determine why Cyp6g1 is so widely selected in the field we examine the pattern of cross-resistance of both resistant strains and transgenic flies over-expressing Cyp6g1 alone. We show that all three DDT selected P450s can confer resistance to the neonicotinoid imidacloprid but that Cyp6a8 confers no cross-resistance to malathion. Transgenic flies over-expressing Cyp6g1 also show cross-resistance to other neonicotinoids such as acetamiprid and nitenpyram. We suggest that the broad level of cross-resistance shown by Cyp6g1 may have facilitated its selection as a resistance gene in natural Drosophila populations. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Insulin secretion and 45SCa2+ uptake and efflux were studied in neonatal rat islets maintained in culture for 7 or 19 days in the absence or presence of prolactin (PRL). Insulin secretion in response to glucose (G), leucine (Leu), arginine (Arg) and carbachol (Cch) was augmented after 7 and 19 days in culture, compared to basal secretion (G 2.8 mM), in both PRL- treated and control islets. However, the increase in insulin secretion induced by the above secretagogues was higher in islets cultured in the presence of PRL for 19 days. In PRL-treated islets, the 45Ca2+ content after a 5 min incubation in the presence of G, Leu, Arg and Cch was significantly higher than the control only in islets cultured for 19 days. Except with Arg, the 45Ca2+ uptake in PRL-treated islets after a 90 min incubation was also significantly higher than the control only in islets cultured for 19 days. Finally, Leu-induced alterations in the 45Ca2+ efflux were higher in PRL-treated than in control islets cultured for 7 or 19 days. In the absence of external Ca2+, the reduction in 45Ca2+ efflux induced by glucose was also significantly higher in PRL-treated than in control islets. This effect was slightly potentiated after 19 days in culture. These data further support the hypothesis that PRL treatment enhances maturation of the secretory mechanism in neonatal islets. This effect can be potentiated even more if the treatment is prolonged.
Resumo:
Increased GLUT2 gene expression in the renal proximal tubule of diabetic rats is an adaptive condition, which may be important in the diabetic nephropathy development. We investigated the effects of insulin treatment upon the renal GLUT2 overexpression of diabetic rats. Acute treatment, surprisingly, induced a rapid further increase in GLUT2 mRNA content. Twelve hours after insulin injection, GLUT2 mRNA was twice the value of saline-injected rats (P < 0.001), when GLUT2 protein remained unchanged. In response to short-term treatment, both GLUT2 mRNA and protein were increased in 1-day treated rats (P < 0.05 versus saline-injected), decreasing after that, and reaching, within 6 days, values close to those of non-diabetic rats. Concluding, insulin treatment induced: initially, an additional upregulation of GLUT2 gene expression, involving posttranscriptional modulation; thereafter, downregulation of GLUT2 expression, which returns to non-diabetic levels. The former may be related to increased insulin concentration, the latter may be due to glycemic control. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Objectives: To examine the effects of triiodothyronine (T3), 17β-estradiol (E2), and tamoxifen (TAM) on transforming growth factor (TGF)-α gene expression in primary breast cancer cell cultures and interactions between the different treatments. Methods and results: Patients included in the study (no.=12) had been newly diagnosed with breast cancer. Fresh human breast carcinoma tissue was cut into 0.3-mm slices. These slices were placed in six 35-mm dishes on 2-ml organ culture medium. Dishes received the following treatments: dish 1: ethanol; dish 2: T3; dish 3: T3+TAM; dish 4: TAM; dish 5: E2; dish 6: E2+TAM. TGF-α mRNA content was normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA levels. All tissues included in this study were positive for estrogen receptor (ER) and thyroid hormone receptor expression. Treatment with T3 for 48 h significantly increased TGF-α mRNA levels compared to controls (15-fold), and concomitant treatment with TAM reduced expression to 3.4-fold compared to controls. When only TAM was added to the culture medium, TGF-α mRNA expression increased 5.3-fold, significantly higher than with all other treatment modalities. Conclusion: We demonstrate that TGF-α mRNA expression is more efficiently upregulated by T3 than E2. Concomitant treatment with TAM had a mitigating effect on the T3 effect, while E2 induced TGF-α upregulation. Our findings show some similarities between primary culture and breast cancer cell lines, but also some important differences: a) induction of TGF-α, a mitogenic protein, by TAM; b) a differential effect of TAM that may depend on relative expression of ER α and β; and c) supraphysiological doses of T3 may induce mitogenic signals in breast cancer tissue under conditions of low circulating E2. ©2008, Editrice Kurtis.
Resumo:
Chronic chagasic cardiomyopathy is a leading cause of heart failure in Latin American countries. About 30% of Trypanosoma cruzi-infected individuals develop this severe symptomatic form of the disease, characterized by intense inflammatory response accompanied by fibrosis in the heart.We performed an extensive microarray analysis of hearts from a mouse model of this disease and identified significant alterations in expression of ~12% of the sampled genes. Extensive up-regulations were associated with immune-inflammatory responses (chemokines, adhesion molecules, cathepsins, and major histocompatibility complex molecules) and fibrosis (extracellular matrix components, lysyl oxidase, and tissue inhibitor of metalloproteinase 1). Our results indicate potentially relevant factors involved in the pathogenesis of the disease that may provide newtherapeutic targets in chronic Chagas disease. © 2010 by the Infectious Diseases Society of America.