927 resultados para two-dimensional electrophoresis
Resumo:
Two-dimensional (2-D) gold networks were spontaneously formed at the air-water interface after HAuCl4 reacted with fructose at 90 degrees C in a sealed vessel, in a reaction in which fructose acted as both a reducing and a protecting agent. Through fine-tuning of the molar ratio of HAuCl4 to fructose, the thus-formed 2-D gold networks can be changed from a coalesced pattern to an interconnected pattern. In the coalesced pattern, some well-defined single-crystalline gold plates at the micrometer-scale could be seen, while in the interconnected pattern, many sub-micrometer particles and some irregular gold plates instead of well-defined gold plates appeared. It is also found that the 2-D gold networks in the form of an interconnected pattern can be used as substrates for surface-enhanced Raman scattering (SERS) because of the strong localized electromagnetic field produced by the gaps between the neighboring particles in the 2-D gold networks.
Resumo:
In this paper, we demonstrate the self-assembly of ionic liquids (ILs)-stabilized Pt nanoparticles into two-dimensional (2D) patterned nanostructures at the air-water interface under ambient conditions. Here, ILs are not used as solvents but as mediators by virtue of their pronounced self-organization ability in synthesis of self-assembled, highly organized hybrid Pt nanostructures. It is also found that the morphologies of the 2D patterned nanostructures are directly connected with the quantities of ILs. Due to the special structures of ILs-stabilized Pt nanoparticles, 2D patterned Pt nanostructures can be formed through the pi-pi stack interactions and hydrogen bonds. The resulting 2D patterned Pt nanostructures exhibit good electrocatalytic activity toward oxygen reduction.
Resumo:
Reactions of Zn(BF4)(2) and pyridine-2,4-dicarboxylic acid (2,4-pydcH(2)) in the presence of 1,2-bis( 4-pyridyl) ethylene or 1,3-bis(4-pyridyl) propane under hydro(solvo) thermal conditions yielded two polymorphic metal-organic coordination polymers formulated as Zn-2(OH)(2)(2,4-pydc) (1 and 2). Polymorph 1 features a two-dimensional (2-D) layer-like structure that is constructed by 2,4-pydc ligands bridging between the Zn-OH-Zn double-chain units. Each single Zn-OH-Zn chain is composed of mu(2)-OH groups connecting trigonal bipyramidal and tetrahedral Zn centers. Polymorph 2 is a 3-D coordination polymer containing 2-D Zn-OH-Zn sheets that consist of mu(2)- and mu(3)-OH groups and trigonal bipyramidal Zn centers. The sheets are pillared by 2,4-pydc ligands to form an acentric structural architecture. 1 and 2 are rare examples that the two polymorphs exhibit a centrosymmetric 2-D coordination network and an acentric 3-D coordination network, respectively. The different structures lead to differences in photoluminescent properties and thermal stabilities for 1 and 2.
Resumo:
The structure of the title compound, [Cu2Cl2(C12H10N2)](n), contains infinite CuCl staircase-like chains, which lie about inversion centres. The trans-1,2-di-4-pyrid-ylethyl-ene mol-ecules also lie about inversion centres and connect the CuCl chains through Cu-N coordination bonds into a two-dimensional organic-inorganic hybrid network. The planar sheets are stacked along the c axis and associated through weak C-H center dot center dot center dot Cl inter-actions. The results show a reliable structural motif with controllable separation of the CuCl chains by variation of the length of the ligand.
Resumo:
Two novel organic-inorganic hybrid compounds, (H(2)enMe)(4)(H3O)[Ni(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (1) and (H(2)enMe)(4)(H3O)[Cu(enMe)(2)].[Na3Mo12O52P8(OH)(10)].5H(2)O (2) (enMe = 1,2-diaminopropane), have been hydrothermally synthesized and characterized by elemental analyses, IR, EPR, XPS, UV-Vis spectra and TG analyses. Single crystal X-ray diffraction shows that 1 and 2 are isostructural compounds. Both the compounds exhibit an unusual two-dimensional (2-D) window-like network consisting of one-dimensional (1-D) chains of sodium molybdenum phosphate anions connected by transition metal coordination complexes cations. Compound 1 and 2 represent the first 2-D molybdenum phosphate skeleton pillared by transition metal complex fragments.
Resumo:
An organic-inorganic hybrid molybdenum phosphate, Na-2[{Mn(phen)(2)(H2O)} {Mn(phen)(2)}(3){(MnMo12O24)-O-v (HPO4)(6)(PO4)(2) (OH)(6)}] . 4H(2)O (phen=1,10-phenanthroline), involving molybdenum present in V oxidation state and covalently bonded transition metal coordination complexes, has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Deep brown-red crystals are formed in the triclinic system, space group P (1) over bar, a=16.581(l)Angstrom, b=18.354(1)Angstrom, c=24.485(2)Angstrom, alpha=80.589(l)degrees, beta=71.279(1)degrees, gamma=67.084(1)degrees, V=6493.8(8)Angstrom(3), Z=2, lambda(MoKalpha)=0.71073Angstrom (R(F)=0.0686 for 29,053 reflections). Data were collected on a Bruker Smart Apex CCD diffractometer at 293 K in the range of 1.76 < theta < 28.06degrees using omega-2theta scans technique. The structure of the title compound may be considered to be based on {Mo6O12(HPO4)(3)(PO4)(OH)(3)} units bonded together with {Mn(phen)(2)} subunits into a two-dimensional network. Two types of tunnels are observed in the solid of the title compound.
Resumo:
The branched crystal morphology of linear polyethylene formed at various temperatures from thin films has been studied by atomic-force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) pattern and polymer decoration technique. Two types of branched patterns, i.e. dendrite and seaweed patterns, have been visualized. The fractal dimension d(f) = 1.65 of both dendrite and some of seaweed patterns was obtained by using the box-counting method, although most of the seaweed patterns are compact. Selected-area ED patterns indicate that the fold stems tilt about 34.5degrees around the b-axis and polymer decoration patterns show that the chain folding direction and regularity in two (200). regions are quite different from each other. Because of chain tilting, branched crystals show three striking features: 1) the lamella-like branches show two (200) regions with different thickness; 2) the crystals usually bend towards the thin region; 3) the thick region grows faster by developing branches, thus branches usually occur outside the thick region. The branched patterns show a characteristic width w, which gives a linear relationship with the crystallization temperature on a semilogarithmic plot.
Resumo:
An investigation into the interactions between thiamine monophosphate (TMP) and anions has resulted in the preparation and X-ray characterization of the compounds (TMP)(Hg2Br5).0.5H(2)O (1) and (TMP)(2)(Hg3I8) (2). In each compound the TMP molecule exists as a monovalent cation in the usual F conformation. The halogenomercurate anions occur in two-dimensional (2-D) network in 1 or one-dimensional (1-D) chain in 2. In both 1 and 2, the structures consist of alternating cationic sheets of the hydrogen-bonded TMP molecules and anionic sheets of the polymeric halogenomercurate anions. The TMP molecule binds to the polymeric anions through the characteristic 'anion bridge I', C(2)-H..X...pyrimidinium (X = Br in 1 and 1 in 2), and electrostatic interactions between electropositive S(1) and halogen atoms. The 'anion bridge II' of the type N(4'1)-H...X...thiazolium (X = phosphate group) plays a role in stabilizing the molecular conformation. The biological implication of the host-guest-like complexation between TMP and polymeric anions is discussed.
Resumo:
The title two-dimensional coordination polymer was synthesised and characterised by X-ray diffraction analysis.
Resumo:
The (1) H and C-13 NMR spectra are reported for Ru(4, 4'-dimethyl-2,2'-bipyridene)(2) (2,2'-bipyridine-4,4'-dicarboxylic acid) (PF6)(2) that can be used as a new electrochemiluminescent probe in immunoasssay and nucleic acid hybridization assay. Because of the effect ol:Ru atom ligands and complex steric configuration, it is difficult to attribute spectra of the title molecular, By using 2D (1) H-(1) H COSY and (1) H-C-13 HETCOR method, the proton and C-13 NMR spectra are assigned completely, which provides a satisfactory method to quantitative and qualitative, analysis of the title moleculer in the further study.
Resumo:
The H-1 and C-13 nuclear magnetic resonance(NMR) spectra are reported for bis(2, 2'-bipyridine)(2, 2'-bipyridine-,4,4'-dicarboxylic acid) ruthenium(II) hexafluoruphosphate that has been used as a tagged molecule of electrochemiluminescent immunoassay. Because of the effect of Ru atom on ligands, it is difficult to assign its NMR spectra. BS' means of two dimensional H-1-H-1 COSY and H-1-C-13 COSY techniques, the H-1 and C-13 NMR spectra of bis (2, 2'-bipylidine) (2, 2'-bipyridine-4, 4-dicarboxylic acid) ruthenium(II) hexafluorophosphate are assigned completely. This provides a basis for NMR characterization of the nerv similar tagged molecules.
Resumo:
Wave generation by the falling rock in the two-dimensional wave tank is experimentally and numerically studied, where the numerical model utilizes the boundary element method to solve the fully nonlinear potential flow theory. The wave profiles at different times are measured in the laboratory, which are also used to test the numerical model. Comparisons show that the experimental and numerical results are in good agreement, and the numerical model can be used to simulate the wave generation due to the submarine rock falling. Further numerical tests on the influences of the rock size, density, initial position and the falling angle on the wave elevation of the generated waves are performed, respectively. The results show that the size and density of the rock have strong effects on the maximum elevation of the generated wave, while the effects of the initial position and the falling angle of the rock are also significant. When the size or the density of the rock increases, the maximum elevation of the generated wave increases. The same effect on the generated wave would be produced if the initial position of the rock becomes closer to the surface, or the falling angle between the falling route and the vertical direction turns larger. In addition, the present numerical tests reveal that the submarine rock falling provides a new generation method for the breaking wave in the wave tank.
Resumo:
This thesis addresses the problem of recognizing solid objects in the three-dimensional world, using two-dimensional shape information extracted from a single image. Objects can be partly occluded and can occur in cluttered scenes. A model based approach is taken, where stored models are matched to an image. The matching problem is separated into two stages, which employ different representations of objects. The first stage uses the smallest possible number of local features to find transformations from a model to an image. This minimizes the amount of search required in recognition. The second stage uses the entire edge contour of an object to verify each transformation. This reduces the chance of finding false matches.
Resumo:
Performance of comprehensive two-dimensional liquid chromatography system is greatly improved than we reported previously by using a silica monolithic column as for the second dimensional separation. Due to the increase of the elution speed on the second dimensional monolithic column, the first dimensional column efficiency and analysis rate can be greatly improved as comparing with conventionally second dimensional column. The developed system was applied to analysis of methanol extraction of two umbelliferae herbs Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels by using CN column as for the first dimensional separation and a silica monolithic ODS column for the second dimensional separation, and the obtained three-dimensional chromatograms were treated by normalization of peak heights with the value of the highest peak or setting a certain value using a software written in-house. It was observed that much more peaks for low-abundant components in TCM extract can clearly be detected here than we reported before, due to the large difference for the amount of components in TCMs' extract. With the above improvements in separation performance and data treatment, totally about 120 components in methanol extraction of Rhizoma chuanxiong and 100 in A. sinensis were separated with UV detection within 130 min. This result meant that both the number of peaks detected increase twice but the analysis time decease twice if comparing with the previously reported result. (c) 2005 Published by Elsevier B.V.