923 resultados para total internal reflection fluorescence microscopy
Resumo:
Current research indicates that exogenous stem cells may accelerate reparative processes in joint disease but, no previous studies have evaluated whether bone marrow cells (BMCs) target the injured cranial cruciate ligament (CCL) in dogs. The objective of this study was to investigate engraftment of BMCs following intra-articular injection in dogs with spontaneous CCL injury. Autologous PKH26-labelled BMCs were injected into the stifle joint of eight client-owned dogs with CCL rupture. The effects of PKH26 staining on cell viability and PKH26 fluorescence intensity were analysed in vitro using a MTT assay and flow cytometry. Labelled BMCs in injured CCL tissue were identified using fluorescence microscopy of biopsies harvested 3 and 13 days after intra-articular BMC injection. The intensity of PKH26 fluorescence declines with cell division but was still detectable after 16 days. Labelling with PKH26 had no detectable effect on cell viability or proliferation. Only rare PKH26-positive cells were present in biopsies of the injured CCL in 3/7 dogs and in synovial fluid in 1/7 dogs. No differences in transforming growth factor-beta1, and interleukin-6 before and after BMC treatment were found and no clinical complications were noted during a 1 year follow-up period. In conclusion, BMCs were shown to engraft to the injured CCL in dogs when injected into the articular cavity. Intra-articular application of PKH26-labelled cultured mesenchymal stem cells is likely to result in higher numbers of engrafted cells that can be tracked using this method in a clinical setting.
Resumo:
BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.
Resumo:
Salmonella enterica subspecies 1 serovar Typhimurium is a common cause of gastrointestinal infections. The host's innate immune system and a complex set of Salmonella virulence factors are thought to contribute to enteric disease. The serovar Typhimurium virulence factors have been studied extensively by using tissue culture assays, and bovine infection models have been used to verify the role of these factors in enterocolitis. Streptomycin-pretreated mice provide an alternative animal model to study enteric salmonellosis. In this model, the Salmonella pathogenicity island 1 type III secretion system has a key virulence function. Nothing is known about the role of other virulence factors. We investigated the role of flagella in murine serovar Typhimurium colitis. A nonflagellated serovar Typhimurium mutant (fliGHI) efficiently colonized the intestine but caused little colitis during the early phase of infection (10 and 24 h postinfection). In competition assays with differentially labeled strains, the fliGHI mutant had a reduced capacity to get near the intestinal epithelium, as determined by fluorescence microscopy. A flagellated but nonchemotactic cheY mutant had the same virulence defects as the fliGHI mutant for causing colitis. In competitive infections, both mutants colonized the intestine of streptomycin-pretreated mice by day 1 postinfection but were outcompeted by the wild-type strain by day 3 postinfection. Together, these data demonstrate that flagella are required for efficient colonization and induction of colitis in streptomycin-pretreated mice. This effect is mostly attributable to chemotaxis. Recognition of flagellar subunits (i.e., flagellin) by innate immune receptors (i.e., Toll-like receptor 5) may be less important.
Resumo:
The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit.
Resumo:
Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM) generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggest a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro. STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR, and fluorescence microscopy. STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL)-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR) signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation was blocked. Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.
Resumo:
Lipid resonances from mobile lipids can be observed by (1)H NMR spectroscopy in multiple tissues and have also been associated with malignancy. In order to use lipid resonances as a marker for disease, a reference standard from a healthy tissue has to be established taking the influence of variable factors like the spinning rate into account. The purpose of our study was to investigate the effect of spinning rate variation on the HR-MAS pattern of lipid resonances in non-neoplastic brain biopsies from different regions and visualize polar and non-polar lipids by fluorescence microscopy using Nile Red staining. (1)H HR-MAS NMR spectroscopy demonstrated higher lipid peak intensities in normal sheep brain pure white matter biopsies compared to mixed white and gray matter biopsies and pure gray matter biopsies. High spinning rates increased the visibility particularly of the methyl resonances at 1.3 and the methylene resonance at 0.89ppm in white matter biopsies stronger compared to thalamus and brainstem biopsies, and gray matter biopsies. The absence of lipid droplets and presence of a large number of myelin sheaths observed in white matter by Nile Red fluorescence microscopy suggest that the observed lipid resonances originate from the macromolecular pool of lipid protons of the myelin sheath's plasma membranes. When using lipid contents as a marker for disease, the variable behavior of lipid resonances in different neuroanatomical regions of the brain and at variable spinning rates should be considered. The findings may open up interesting possibilities for investigating lipids in myelin sheaths.
Resumo:
BACKGROUND Tubules and sheets of endoplasmic reticulum perform different functions and undergo inter-conversion during different stages of the cell cycle. Tubules are stabilized by curvature inducing resident proteins, but little is known about the mechanisms of endoplasmic reticulum sheet stabilization. Tethering of endoplasmic reticulum membranes to the cytoskeleton or to each other has been proposed as a plausible way of sheet stabilization. RESULTS Here, using fluorescence microscopy we show that the previously proposed mechanisms, such as membrane tethering via GFP-dimerization or coiled coil protein aggregation do not explain the formation of the calnexin-induced organized smooth endoplasmic reticulum membrane stacks. We also show that the LINC complex proteins known to serve a tethering function in the nuclear envelope are excluded from endoplasmic reticulum stacks. Finally, using cryo-electron microscopy of vitreous sections methodology that preserves cellular architecture in a hydrated, native-like state, we show that the sheet stacks are highly regular and may contain ordered arrays of macromolecular complexes. Some of these complexes decorate the cytosolic surface of the membranes, whereas others appear to span the width of the cytosolic or luminal space between the stacked sheets. CONCLUSION Our results provide evidence in favour of the hypothesis of endoplasmic reticulum sheet stabilization by intermembrane tethering.
Resumo:
The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment) campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.
Resumo:
Adhesion involves interactions between cells or cells with extracellular matrix components and is a fundamental process for all multicellular organisms as well as many pathogenic microbes. Integrins are heterodimeric transmembrane proteins that function as adhesion molecules and transduce signals between the extracellular environment and the intracellular cytoskeletal machinery. β1 integrin subfamily is highly expressed on T lymphocytes and mediates cell spreading, adhesion and coactivation. T lymphocytes have an important role in the regulation and homeostasis of the immune system therefore, the goals of this study were to first to investigate β1 integrin interaction with fibronectin binding protein A (FnbpA), a surface protein expressed on gram-negative bacteria Staphylococcus aureus. Second, characterize the association and function of a non-integrin surface protein, CD98, with β1 integrins on T lymphocytes. ^ FnbpA binds to fibronectin (FN), also a ligand for α5β1 and α4β1 integrins on T lymphocytes. Since both bacterial proteins FnbpA and T cell integrins utilize FN, it was of interest to determine the effects FnbpA on T cell activation. Results demonstrated that recombinant FnbpA (rFnbpA) coimmobilized with OKT3 mediated T cell coactivation in a soluble FN-dependent manner. Integrin α5β1 was identified as the main integrin utilized by Staphylococcus aureus FnbpA from studies using soluble antibodies to inhibit T cell proliferation and parallel plate flow chamber assays. The mechanism of rFnbpA-mediated coactivation was one that used soluble FN as a bridge between rFnbpA and integrin α5β1 on the T lymphocyte. ^ Since integrins are utilized by T lymphocytes and bacterial proteins, it was of interest to identify proteins involved in integrin regulation. Anti-CD98 mAb 80A10 was identified and characterized from a screen to identify surface proteins involved in integrin signaling and functions. CD98 is a non-integrin protein that was sensitive to integrin inhibition in human T lymphocyte aggregation and activation, thus suggested that CD98 shared a common signaling pathway with integrins. These results led to the question of whether CD98 physically associates with β1 integrins. Fluorescence microscopy and biochemical analysis determined that CD98 is specifically associated with β1 integrin on human T lymphocytes and may be part of a larger multimolecular signaling complex. ^
Resumo:
Inhibition of DNA repair by the nucleoside of fludarabine (F-ara-A) induces toxicity in quiescent human cells. The sensing and signaling mechanisms following DNA repair inhibition by F-ara-A are unknown. The central hypothesis of this project was that the mechanistic interaction of a DNA repair initiating agent and a nucleoside analog initiates an apoptotic signal in quiescent cells. The purpose of this research was to identify the sensing and signaling mechanism(s) that respond to DNA repair inhibition by F-ara-A. Lymphocytes were treated with F-ara-A, to accumulate the active triphosphate metabolite and subsequently DNA repair was activated by UV irradiation. Pre-incubation of lymphocytes with 3 μM F-ara-A inhibited DNA repair initiated by 2 J/m2 UV and induced greater than additive apoptosis after 24 h. Blocking the incorporation of F-ara-A nucleotide into repairing DNA using 30 μM aphidicolin considerably lowered the apoptotic response. ^ Wild-type quiescent cells showed a significant loss in viability than did cells lacking functional sensor kinase DNA-PKcs or p53 as measured by colony formation assays. The functional status of ATM did not appear to affect the apoptotic outcome. Immunoprecipitation studies showed an interaction between the catalytic sub-unit of DNA-PK and p53 following DNA repair inhibition. Confocal fluorescence microscopy studies have indicated the localization pattern of p53, DNA-PK and γ-H2AX in the nucleus following DNA damage. Foci formation by γ-H2AX was seen as an early event that is followed by interaction with DNA-PKcs. p53 serine-15 phosphorylation and accumulation were detected 2 h after treatment. Fas/Fas ligand expression increased significantly after repair inhibition and was dependent on the functional status of p53. Blocking the interaction between Fas and Fas ligand by neutralizing antibodies significantly rescued the apoptotic fraction of cells. ^ Collectively, these results suggest that incorporation of the nucleoside analog into repair patches is critical for cytotoxicity and that the DNA damage, while being sensed by DNA-PK, may induce apoptosis by a p53-mediated signaling mechanism. Based on the results, a model is proposed for the sensing of F-ara-A-induced DNA damage that includes γ-H2AX, DNA-PKcs, and p53. Targeting the cellular DNA repair mechanism can be a potential means of producing cytotoxicity in a quiescent population of neoplastic cells. These results also provide mechanistic support for the success of nucleoside analogs with cyclophosphamide or other agents that initiate excision repair processes, in the clinic. ^
Resumo:
Mycobacterium tuberculosis, the causative agent of tuberculosis, survives within macrophages by altering host cell activation and by manipulating phagosomal trafficking and acidification. Part of the success of M. tuberculosis as a major human pathogen has been attributed to its cell wall, a unique structure largely comprised of mycolic acids. Trehalose 6,6′-dimycolate (TDM) is the major glycolipid component on the surface of the mycobacterial cell wall. This study examines the contribution of TDM during mycobacterial infection of murine macrophages. Virulent M. tuberculosis was chemically depleted of surface-exposed TDM using petroleum ether extraction. Compared to their native counterparts, delipidated M. tuberculosis showed similar growth in broth culture. Bone marrow-derived macrophages (BMM) or the murine macrophage-like cell line J774A.1 were infected with delipidated M. tuberculosis, and responses were compared to cells infected with native M. tuberculosis. Delipidated M. tuberculosis demonstrated significantly decreased viability in macrophages by seven days after infection. Reconstitution of delipidated organisms with pure TDM restored viability. Infection with native M. tuberculosis led to high cellular production of cytokines (IL-1β, IL-6, IL-12, and TNF-α) and chemokines (MCP-1 and MIP-1α); infection with delipidated M. tuberculosis significantly abrogated responses. Cytokine and chemokine production were restored when delipidated organisms were reconstituted with TDM. Responses were specifically induced by TDM; all measured cytokines were elicited from macrophages incubated with TDM-coated beads, while control beads coated with bovine serum albumin (BSA) did not induce cytokine production. Visualization of mycobacterial localization in J774A.1 cells using fluorescence microscopy revealed that delipidated M. tuberculosis were significantly more likely to traffic to acidic vesicles (lysosomes) than native organisms. Reconstitution with TDM restored trafficking to non-acidic vesicles. Similarly, TDM-coated beads demonstrated significantly delayed localization to acidic vesicles compared to BSA-coated beads. In summary, the interaction of TDM with macrophages may regulate the outcome of M. tuberculosis infection by influencing cellular cytokine production and intracellular localization of organisms. This research has elucidated a novel and necessary role for TDM in survival of virulent M. tuberculosis in host macrophages during in vitro infection. ^
Resumo:
Objective. To determine whether transforming growth factor beta (TGF-β) receptor blockade using an oral antagonist has an effect on cardiac myocyte size in the hearts of transgenic mice with a heart failure phenotype. ^ Methods. In this pilot experimental study, cardiac tissue sections from the hearts of transgenic mice overexpressing tumor necrosis factor (MHCsTNF mice) having a phenotype of heart failure and wild-type mice, treated with an orally available TGF-β receptor antagonist were stained with wheat germ agglutinin to delineate the myocyte cell membrane and imaged using fluorescence microscopy. Using MetaVue software, the cardiac myocyte circumference was traced and the cross sectional area (CSA) of individual myocytes were measured. Measurements were repeated at the epicardial, mid-myocardial and endocardial levels to ensure adequate sampling and to minimize the effect of regional variations in myocyte size. ANOVA testing with post-hoc pairwise comparisons was done to assess any difference between the drug-treated and diluent-treated groups. ^ Results. There were no statistically significant differences in the average myocyte CSA measured at the epicardial, mid-myocardial or endocardial levels between diluent treated littermate control mice, drug treated normal mice, diluent-treated transgenic mice and drug-treated transgenic mice. There was no difference between the average pan-myocardial cross sectional area between any of the four groups mentioned above. ^ Conclusions. TGF-β receptor blockade using oral TGF-β receptor antagonist does not alter myocyte size in MHCsTNF mice that have a phenotype of heart failure. ^
Resumo:
Dental caries is the most common chronic disease worldwide. It is characterized by the demineralization of tooth enamel caused by acid produced by cariogenic dental bacteria growing on tooth surfaces, termed bacterial biofilms. Cariogenesis is a complex biological process that is influence by multiple factors and is not attributed to a sole causative agent. Instead, caries is associated with multispecies microbial biofilm communities composed of some bacterial species that directly influence the development of a caries lesion and other species that are seemingly benign but must contribute to the community in an uncharacterized way. Clinical analysis of dental caries and its microbial populations is challenging due to many factors including low sensitivity of clinical measurement tools, variability in saliva chemistry, and variation in the microbiota. Our laboratory has developed an in vitro anaerobic biofilm model for dental carries to facilitate both clinical and basic research-based analyses of the multispecies dynamics and individual factors that contribute to cariogenicity. The rational for development of this system was to improve upon the current models that lack key elements. This model places an emphasis on physiological relevance and ease of maintenance and reproducibility. The uniqueness of the model is based on integrating four critical elements: 1) a biofilm community composed of four distinct and representative species typically associated with dental caries, 2) a semi-defined synthetic growth medium designed to mimic saliva, 3) physiologically relevant biofilm growth substrates, and 4) a novel biofilm reactor device designed to facilitate the maintenance and analysis. Specifically, human tooth sections or hydroxyapatite discs embedded into poly(methyl methacrylate) (PMMA) discs are incubated for an initial 24 hr in a static inverted removable substrate (SIRS) biofilm reactor at 37°C under anaerobic conditions in artificial saliva (CAMM) without sucrose in the presence of 1 X 106 cells/ml of each Actinomyces odontolyticus, Fusobacterium nucleatum, Streptococcus mutans, and Veillonella dispar. During days 2 and 3 the samples are maintained continually in CAMM with various exposures to 0.2% sucrose; all of the discs are transferred into fresh medium every 24 hr. To validate that this model is an appropriate in vitro representation of a caries-associated multispecies biofilm, research aims were designed to test the following overarching hypothesis: an in vitro anaerobic biofilm composed of four species (S. mutans, V. dispar, A. odontolyticus, and F. nucleatum) will form a stable biofilm with a community profile that changes in response to environmental conditions and exhibits a cariogenic potential. For these experiments the biofilms as described above were exposed on days 2 and 3 to either CAMM lacking sucrose (no sucrose), CAMM with 0.2% sucrose (constant sucrose), or were transferred twice a day for 1 hr each time into 0.2% sucrose (intermittent sucrose). Four types of analysis were performed: 1) fluorescence microscopy of biofilms stained with Syto 9 and hexidium idodine to determine the biofilm architecture, 2) quantitative PCR (qPCR) to determine the cell number of each species per cm2, 3) vertical scanning interferometry (VSI) to determine the cariogenic potential of the biofilms, and 4) tomographic pH imaging using radiometric fluorescence microscopy after exposure to pH sensitive nanoparticles to measure the micro-environmental pH. The qualitative and quantitative results reveal the expected dynamics of the community profile when exposed to different sucrose conditions and the cariogenic potential of this in vitro four-species anaerobic biofilm model, thus confirming its usefulness for future analysis of primary and secondary dental caries.